File size: 6,595 Bytes
ef4c959 4ee8df6 ef4c959 4ee8df6 ef4c959 3d2330d ef4c959 4ee8df6 ef4c959 db2bb64 ef4c959 cef5000 ef4c959 3d2330d ef4c959 9396915 ef4c959 9396915 ef4c959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
license: apache-2.0
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
tags:
- text-classification
- register
- web-register
- genre
---
# Web register classification (English model)
A web register classifier for texts in English, fine-tuned from [XLM-RoBERTa-large](https://huggingface.co/FacebookAI/xlm-roberta-large).
The model is trained with the [Corpus of Online Registers of English (CORE)](https://github.com/TurkuNLP/CORE-corpus) to classify documents based on the [CORE taxonomy](https://turkunlp.org/register-annotation-docs/).
It is designed to support the development of open language models and for linguists analyzing register variation.
For a multilingual CORE classifier, see [here](https://huggingface.co/TurkuNLP/web-register-classification-multilingual).
## Model Details
### Model Description
- **Developed by:** TurkuNLP
- **Funded by:** The Research Council of Finland, Emil Aaltonen Foundation, University of Turku
- **Shared by:** TurkuNLP
- **Model type:** Language model
- **Language(s) (NLP):** English
- **License:** apache-2.0
- **Finetuned from model:** FacebookAI/xlm-roberta-large
### Model Sources
- **Repository:** Coming soon!
- **Paper:** Coming soon!
## Register labels and their abbreviations
Below is a list of the register labels predicted by the model. Note that some labels are hierarchical; when a sublabel is predicted, its parent label is also predicted.
For a more detailed description of the label scheme, see [here](https://turkunlp.org/register-annotation-docs/).
The main labels are uppercase. To only include these main labels in the predictions, simply slice the model's output to keep only the uppercase labels.
- **LY:** Lyrical
- **SP:** Spoken
- **it:** Interview
- **ID:** Interactive discussion
- **NA:** Narrative
- **ne:** News report
- **sr:** Sports report
- **nb:** Narrative blog
- **HI:** How-to or instructions
- **re:** Recipe
- **IN:** Informational description
- **en:** Encyclopedia article
- **ra:** Research article
- **dtp:** Description of a thing or person
- **fi:** Frequently asked questions
- **lt:** Legal terms and conditions
- **OP:** Opinion
- **rv:** Review
- **ob:** Opinion blog
- **rs:** Denominational religious blog or sermon
- **av:** Advice
- **IP:** Informational persuasion
- **ds:** Description with intent to sell
- **ed:** News & opinion blog or editorial
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "TurkuNLP/web-register-classification-en"
# Load model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained(model_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Text to be categorized
text = "A text to be categorized"
# Tokenize text
inputs = tokenizer([text], return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
# Apply sigmoid to the logits to get probabilities
probabilities = torch.sigmoid(outputs.logits).squeeze()
# Determine a threshold for predicting labels
threshold = 0.5
predicted_label_indices = (probabilities > threshold).nonzero(as_tuple=True)[0]
# Extract readable labels using id2label
id2label = model.config.id2label
predicted_labels = [id2label[idx.item()] for idx in predicted_label_indices]
print("Predicted labels:", predicted_labels)
```
## Training Details
### Training Data
The model was trained using the Multilingual CORE Corpora, which will be published soon.
### Training Procedure
#### Training Hyperparameters
- **Batch size:** 8
- **Epochs:** 9
- **Learning rate:** 0.00003
- **Precision:** bfloat16 (non-mixed precision)
- **TF32:** Enabled
- **Seed:** 42
- **Max Size:** 512 tokens
#### Inference time
Average inference time (across 1000 iterations), using a single NVIDIA A100 GPU and a batch size of one is **17 ms** for a single example. Wirh bigger batches, inference can be considerably faster.
## Evaluation
Micro-averaged F1 scores and optimized prediction thresholds (test set):
| Language | F1 (All labels) | F1 (Main labels) | Threshold |
| -------- | --------------- | ---------------- | ----------|
| English | 0.74 | 0.76 | 0.40 |
## Technical Specifications
### Compute Infrastructure
- Mahti supercomputer (CSC - IT Center for Science, Finland)
- 1 x NVIDIA A100-SXM4-40GB
#### Software
- torch 2.2.1
- transformers 4.39.3
## Citation
If you use this model, please cite the following publication:
```bibtex
@misc{henriksson2024untanglingunrestrictedwebautomatic,
title={Untangling the Unrestricted Web: Automatic Identification of Multilingual Registers},
author={Erik Henriksson and Amanda Myntti and Anni Eskelinen and Selcen Erten-Johansson and Saara Hellström and Veronika Laippala},
year={2024},
eprint={2406.19892},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.19892},
}
```
Earlier related work include the following:
```bibtex
@article{Laippala.etal2022,
title = {Register Identification from the Unrestricted Open {{Web}} Using the {{Corpus}} of {{Online Registers}} of {{English}}},
author = {Laippala, Veronika and R{\"o}nnqvist, Samuel and Oinonen, Miika and Kyr{\"o}l{\"a}inen, Aki-Juhani and Salmela, Anna and Biber, Douglas and Egbert, Jesse and Pyysalo, Sampo},
year = {2022},
journal = {Language Resources and Evaluation},
issn = {1574-0218},
doi = {10.1007/s10579-022-09624-1},
url = {https://doi.org/10.1007/s10579-022-09624-1},
}
@article{Skantsi_Laippala_2023,
title = {Analyzing the unrestricted web: The finnish corpus of online registers},
doi = {10.1017/S0332586523000021},
journal = {Nordic Journal of Linguistics},
author = {Skantsi, Valtteri and Laippala, Veronika},
year = {2023},
pages = {1–31}
}
```
## Model Card Contact
Erik Henriksson, Hugging Face username: erikhenriksson |