File size: 1,735 Bytes
7a3114d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f4e5b0
 
 
 
 
7a3114d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f4e5b0
 
 
7a3114d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-ner

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1821
- Precision: 0.7700
- Recall: 0.8331
- F1: 0.8003
- Accuracy: 0.9436

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2183        | 1.0   | 2078 | 0.2050          | 0.7135    | 0.8089 | 0.7582 | 0.9323   |
| 0.1742        | 2.0   | 4156 | 0.1773          | 0.7461    | 0.8318 | 0.7866 | 0.9422   |
| 0.1407        | 3.0   | 6234 | 0.1821          | 0.7700    | 0.8331 | 0.8003 | 0.9436   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1