TromeroResearch commited on
Commit
88f29e5
1 Parent(s): a5d8c72

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -16
README.md CHANGED
@@ -23,25 +23,15 @@ To run this model for yourself:
23
  ```python
24
  from transformers import AutoModelForCausalLM, AutoTokenizer
25
 
26
- device = "cuda" # the device to load the model onto
27
-
28
  model = AutoModelForCausalLM.from_pretrained("TromeroResearch/SciMistral-V1")
29
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
30
-
31
- messages = [
32
- {"role": "user", "content": "What is your favourite condiment?"},
33
- {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
34
- {"role": "user", "content": "Do you have mayonnaise recipes?"}
35
- ]
36
 
37
- encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
 
38
 
39
- model_inputs = encodeds.to(device)
40
- model.to(device)
41
 
42
- generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
43
- decoded = tokenizer.batch_decode(generated_ids)
44
- print(decoded[0])
45
  ```
46
 
47
 
@@ -78,4 +68,11 @@ And it continues. A much better, more useful and relevant response to someone wh
78
 
79
  ## Hardware
80
 
81
- 4 x Nvidia A6000 GPUs
 
 
 
 
 
 
 
 
23
  ```python
24
  from transformers import AutoModelForCausalLM, AutoTokenizer
25
 
 
 
26
  model = AutoModelForCausalLM.from_pretrained("TromeroResearch/SciMistral-V1")
27
+ tokenizer = AutoTokenizer.from_pretrained("TromeroResearch/SciMistral-V1")
 
 
 
 
 
 
28
 
29
+ prompt = "This paper seeks to disprove that 1+1=2"
30
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
31
 
32
+ output = model.generate(input_ids, max_length=150, num_return_sequences=1, repetition_penalty=1.2, top_k=50, top_p=0.95, temperature=1.0)
 
33
 
34
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
 
 
35
  ```
36
 
37
 
 
68
 
69
  ## Hardware
70
 
71
+ 4 x Nvidia A6000 GPUs
72
+
73
+
74
+ ## Limitations
75
+
76
+ The SciMistral model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
77
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
78
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.