TromeroResearch
commited on
Commit
•
a5d8c72
1
Parent(s):
ad27049
Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,81 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
|
|
176 |
|
177 |
-
|
|
|
|
|
|
|
178 |
|
179 |
-
**APA:**
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
|
|
|
|
|
|
186 |
|
187 |
-
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
[
|
192 |
|
193 |
-
|
|
|
|
|
|
|
194 |
|
195 |
-
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
|
199 |
-
[More Information Needed]
|
200 |
|
|
|
201 |
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
datasets:
|
5 |
+
- arxiv_dataset
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
pipeline_tag: text-generation
|
9 |
---
|
10 |
|
11 |
+
# Model Card for SciMistral-V1
|
12 |
|
13 |
+
The SciMistral-V1 Large Language Model (LLM) is an improved fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
|
14 |
|
15 |
+
This model was fine-tuned using the [arxiv-dataset](https://www.kaggle.com/datasets/Cornell-University/arxiv), in particular, using abstracts from a variety of scientific papers.
|
16 |
|
17 |
+
For our article explaining more on how we did this, please check out our [website](https://www.tromero.ai/articles)!
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## How to Get Started with the Model
|
21 |
|
22 |
+
To run this model for yourself:
|
23 |
+
```python
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
device = "cuda" # the device to load the model onto
|
27 |
|
28 |
+
model = AutoModelForCausalLM.from_pretrained("TromeroResearch/SciMistral-V1")
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
30 |
|
31 |
+
messages = [
|
32 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
33 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
34 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
35 |
+
]
|
36 |
|
37 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
38 |
|
39 |
+
model_inputs = encodeds.to(device)
|
40 |
+
model.to(device)
|
41 |
|
42 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
43 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
44 |
+
print(decoded[0])
|
45 |
+
```
|
46 |
|
|
|
47 |
|
48 |
+
## Sample results
|
49 |
|
50 |
+
Regular [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1):
|
51 |
|
52 |
+
Abstract start:
|
53 |
+
```markdown
|
54 |
+
This paper seeks to disprove that 1+1=2
|
55 |
+
```
|
56 |
|
57 |
+
Generated completion:
|
58 |
+
```markdown
|
59 |
+
The first thing we need to do is define what a number is, and how it relates to the world around us. A number can be defined as an abstract concept used for counting or measuring things in our environment. It’s important to note here that numbers are not physical objects; they exist only within our minds…
|
60 |
+
```
|
61 |
|
62 |
+
And so on… A pretty weak, unscientific and generic response, something you’d expect from someone pretending to know what they’re talking about. But with our model:
|
63 |
|
64 |
+
[SciMistral](https://huggingface.co/Tromero/SciMistral-V1):
|
65 |
|
66 |
+
Abstract start:
|
67 |
+
```markdown
|
68 |
+
This paper seeks to disprove that 1+1=2
|
69 |
+
```
|
70 |
|
71 |
+
Generated completion:
|
72 |
+
```markdown
|
73 |
+
We do this by showing that the equation is not true in all models of arithmetic, and hence it cannot be proved from Peano Arithmetic (PA). The proof uses a technique called "forcing" which was introduced into mathematical logic by Cohen in his famous work on forcing for set theory. We show how to use forcing to construct a model of PA where 1+1 does not equal 2…
|
74 |
+
```
|
75 |
|
76 |
+
And it continues. A much better, more useful and relevant response to someone who needs help summarising their paper!
|
77 |
|
|
|
78 |
|
79 |
+
## Hardware
|
80 |
|
81 |
+
4 x Nvidia A6000 GPUs
|