File size: 1,721 Bytes
f46b0bf
 
 
 
 
 
3565b62
f46b0bf
 
 
 
 
 
 
 
 
 
 
 
2a0f457
 
f46b0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0f457
 
f46b0bf
 
2a0f457
 
f46b0bf
2a0f457
f46b0bf
 
 
 
 
 
 
 
2a0f457
 
 
 
 
f46b0bf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: gpt2
model-index:
- name: gpt2_summarization_reward_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2_summarization_reward_model

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7376
- Accuracy: 0.6020

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6521        | 1.0   | 1451 | 0.6670          | 0.6037   |
| 0.6101        | 2.0   | 2902 | 0.6763          | 0.6022   |
| 0.5772        | 3.0   | 4353 | 0.7034          | 0.6026   |
| 0.5503        | 4.0   | 5804 | 0.7215          | 0.6024   |
| 0.5347        | 5.0   | 7255 | 0.7376          | 0.6020   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2