|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
base_model: EleutherAI/gpt-neo-125m |
|
model-index: |
|
- name: gpt-neo-125m-finetuned-philosopher_rave_100 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt-neo-125m-finetuned-philosopher_rave_100 |
|
|
|
This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3681 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-07 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| No log | 1.0 | 155 | 2.6967 | |
|
| No log | 2.0 | 310 | 2.6846 | |
|
| No log | 3.0 | 465 | 2.6733 | |
|
| 2.6891 | 4.0 | 620 | 2.6626 | |
|
| 2.6891 | 5.0 | 775 | 2.6524 | |
|
| 2.6891 | 6.0 | 930 | 2.6427 | |
|
| 2.6569 | 7.0 | 1085 | 2.6336 | |
|
| 2.6569 | 8.0 | 1240 | 2.6248 | |
|
| 2.6569 | 9.0 | 1395 | 2.6164 | |
|
| 2.6215 | 10.0 | 1550 | 2.6083 | |
|
| 2.6215 | 11.0 | 1705 | 2.6005 | |
|
| 2.6215 | 12.0 | 1860 | 2.5931 | |
|
| 2.6022 | 13.0 | 2015 | 2.5858 | |
|
| 2.6022 | 14.0 | 2170 | 2.5789 | |
|
| 2.6022 | 15.0 | 2325 | 2.5721 | |
|
| 2.6022 | 16.0 | 2480 | 2.5657 | |
|
| 2.5777 | 17.0 | 2635 | 2.5594 | |
|
| 2.5777 | 18.0 | 2790 | 2.5532 | |
|
| 2.5777 | 19.0 | 2945 | 2.5473 | |
|
| 2.5548 | 20.0 | 3100 | 2.5416 | |
|
| 2.5548 | 21.0 | 3255 | 2.5360 | |
|
| 2.5548 | 22.0 | 3410 | 2.5306 | |
|
| 2.5359 | 23.0 | 3565 | 2.5253 | |
|
| 2.5359 | 24.0 | 3720 | 2.5202 | |
|
| 2.5359 | 25.0 | 3875 | 2.5152 | |
|
| 2.5248 | 26.0 | 4030 | 2.5103 | |
|
| 2.5248 | 27.0 | 4185 | 2.5056 | |
|
| 2.5248 | 28.0 | 4340 | 2.5011 | |
|
| 2.5248 | 29.0 | 4495 | 2.4966 | |
|
| 2.5053 | 30.0 | 4650 | 2.4922 | |
|
| 2.5053 | 31.0 | 4805 | 2.4880 | |
|
| 2.5053 | 32.0 | 4960 | 2.4839 | |
|
| 2.4871 | 33.0 | 5115 | 2.4798 | |
|
| 2.4871 | 34.0 | 5270 | 2.4759 | |
|
| 2.4871 | 35.0 | 5425 | 2.4721 | |
|
| 2.4808 | 36.0 | 5580 | 2.4683 | |
|
| 2.4808 | 37.0 | 5735 | 2.4647 | |
|
| 2.4808 | 38.0 | 5890 | 2.4612 | |
|
| 2.4659 | 39.0 | 6045 | 2.4577 | |
|
| 2.4659 | 40.0 | 6200 | 2.4544 | |
|
| 2.4659 | 41.0 | 6355 | 2.4511 | |
|
| 2.4517 | 42.0 | 6510 | 2.4479 | |
|
| 2.4517 | 43.0 | 6665 | 2.4447 | |
|
| 2.4517 | 44.0 | 6820 | 2.4417 | |
|
| 2.4517 | 45.0 | 6975 | 2.4387 | |
|
| 2.4466 | 46.0 | 7130 | 2.4359 | |
|
| 2.4466 | 47.0 | 7285 | 2.4330 | |
|
| 2.4466 | 48.0 | 7440 | 2.4303 | |
|
| 2.4348 | 49.0 | 7595 | 2.4276 | |
|
| 2.4348 | 50.0 | 7750 | 2.4250 | |
|
| 2.4348 | 51.0 | 7905 | 2.4225 | |
|
| 2.4238 | 52.0 | 8060 | 2.4201 | |
|
| 2.4238 | 53.0 | 8215 | 2.4177 | |
|
| 2.4238 | 54.0 | 8370 | 2.4154 | |
|
| 2.4172 | 55.0 | 8525 | 2.4131 | |
|
| 2.4172 | 56.0 | 8680 | 2.4109 | |
|
| 2.4172 | 57.0 | 8835 | 2.4088 | |
|
| 2.4172 | 58.0 | 8990 | 2.4067 | |
|
| 2.4097 | 59.0 | 9145 | 2.4047 | |
|
| 2.4097 | 60.0 | 9300 | 2.4027 | |
|
| 2.4097 | 61.0 | 9455 | 2.4008 | |
|
| 2.4054 | 62.0 | 9610 | 2.3990 | |
|
| 2.4054 | 63.0 | 9765 | 2.3972 | |
|
| 2.4054 | 64.0 | 9920 | 2.3955 | |
|
| 2.3936 | 65.0 | 10075 | 2.3938 | |
|
| 2.3936 | 66.0 | 10230 | 2.3922 | |
|
| 2.3936 | 67.0 | 10385 | 2.3906 | |
|
| 2.394 | 68.0 | 10540 | 2.3891 | |
|
| 2.394 | 69.0 | 10695 | 2.3877 | |
|
| 2.394 | 70.0 | 10850 | 2.3863 | |
|
| 2.387 | 71.0 | 11005 | 2.3850 | |
|
| 2.387 | 72.0 | 11160 | 2.3837 | |
|
| 2.387 | 73.0 | 11315 | 2.3824 | |
|
| 2.387 | 74.0 | 11470 | 2.3813 | |
|
| 2.3812 | 75.0 | 11625 | 2.3801 | |
|
| 2.3812 | 76.0 | 11780 | 2.3791 | |
|
| 2.3812 | 77.0 | 11935 | 2.3780 | |
|
| 2.3812 | 78.0 | 12090 | 2.3771 | |
|
| 2.3812 | 79.0 | 12245 | 2.3762 | |
|
| 2.3812 | 80.0 | 12400 | 2.3753 | |
|
| 2.3802 | 81.0 | 12555 | 2.3745 | |
|
| 2.3802 | 82.0 | 12710 | 2.3737 | |
|
| 2.3802 | 83.0 | 12865 | 2.3730 | |
|
| 2.3687 | 84.0 | 13020 | 2.3723 | |
|
| 2.3687 | 85.0 | 13175 | 2.3717 | |
|
| 2.3687 | 86.0 | 13330 | 2.3711 | |
|
| 2.3687 | 87.0 | 13485 | 2.3706 | |
|
| 2.3722 | 88.0 | 13640 | 2.3702 | |
|
| 2.3722 | 89.0 | 13795 | 2.3698 | |
|
| 2.3722 | 90.0 | 13950 | 2.3694 | |
|
| 2.3693 | 91.0 | 14105 | 2.3691 | |
|
| 2.3693 | 92.0 | 14260 | 2.3688 | |
|
| 2.3693 | 93.0 | 14415 | 2.3686 | |
|
| 2.3654 | 94.0 | 14570 | 2.3684 | |
|
| 2.3654 | 95.0 | 14725 | 2.3683 | |
|
| 2.3654 | 96.0 | 14880 | 2.3682 | |
|
| 2.372 | 97.0 | 15035 | 2.3682 | |
|
| 2.372 | 98.0 | 15190 | 2.3681 | |
|
| 2.372 | 99.0 | 15345 | 2.3681 | |
|
| 2.3664 | 100.0 | 15500 | 2.3681 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|