|
--- |
|
license: apache-2.0 |
|
library_name: transformers |
|
base_model: nbeerbower/mistral-nemo-gutenberg3-12B |
|
datasets: |
|
- jondurbin/gutenberg-dpo-v0.1 |
|
- nbeerbower/gutenberg2-dpo |
|
- nbeerbower/gutenberg-moderne-dpo |
|
tags: |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF |
|
This model was converted to GGUF format from [`nbeerbower/mistral-nemo-gutenberg3-12B`](https://huggingface.co/nbeerbower/mistral-nemo-gutenberg3-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/nbeerbower/mistral-nemo-gutenberg3-12B) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
Mahou-1.5-mistral-nemo-12B-lorablated finetuned on jondurbin/gutenberg-dpo-v0.1, nbeerbower/gutenberg2-dpo, and nbeerbower/gutenberg-moderne-dpo. |
|
Method |
|
|
|
ORPO tuned with 8x A100 for 2 epochs. |
|
|
|
QLoRA config: |
|
|
|
# QLoRA config |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch_dtype, |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
# LoRA config |
|
peft_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] |
|
) |
|
|
|
Training config: |
|
|
|
orpo_args = ORPOConfig( |
|
run_name=new_model, |
|
learning_rate=8e-6, |
|
lr_scheduler_type="linear", |
|
max_length=4096, |
|
max_prompt_length=2048, |
|
max_completion_length=2048, |
|
beta=0.1, |
|
per_device_train_batch_size=2, |
|
per_device_eval_batch_size=2, |
|
gradient_accumulation_steps=1, |
|
optim="paged_adamw_8bit", |
|
num_train_epochs=2, |
|
evaluation_strategy="steps", |
|
eval_steps=0.2, |
|
logging_steps=1, |
|
warmup_steps=10, |
|
max_grad_norm=10, |
|
report_to="wandb", |
|
output_dir="./results/", |
|
bf16=True, |
|
gradient_checkpointing=True, |
|
) |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -c 2048 |
|
``` |
|
|