File size: 3,271 Bytes
e4d1531 2297738 e4d1531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: apache-2.0
library_name: transformers
base_model: nbeerbower/mistral-nemo-gutenberg3-12B
datasets:
- jondurbin/gutenberg-dpo-v0.1
- nbeerbower/gutenberg2-dpo
- nbeerbower/gutenberg-moderne-dpo
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF
This model was converted to GGUF format from [`nbeerbower/mistral-nemo-gutenberg3-12B`](https://huggingface.co/nbeerbower/mistral-nemo-gutenberg3-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/nbeerbower/mistral-nemo-gutenberg3-12B) for more details on the model.
---
Model details:
-
Mahou-1.5-mistral-nemo-12B-lorablated finetuned on jondurbin/gutenberg-dpo-v0.1, nbeerbower/gutenberg2-dpo, and nbeerbower/gutenberg-moderne-dpo.
Method
ORPO tuned with 8x A100 for 2 epochs.
QLoRA config:
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
# LoRA config
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj']
)
Training config:
orpo_args = ORPOConfig(
run_name=new_model,
learning_rate=8e-6,
lr_scheduler_type="linear",
max_length=4096,
max_prompt_length=2048,
max_completion_length=2048,
beta=0.1,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
gradient_accumulation_steps=1,
optim="paged_adamw_8bit",
num_train_epochs=2,
evaluation_strategy="steps",
eval_steps=0.2,
logging_steps=1,
warmup_steps=10,
max_grad_norm=10,
report_to="wandb",
output_dir="./results/",
bf16=True,
gradient_checkpointing=True,
)
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/mistral-nemo-gutenberg3-12B-Q6_K-GGUF --hf-file mistral-nemo-gutenberg3-12b-q6_k.gguf -c 2048
```
|