language:
- en
license: other
library_name: transformers
tags:
- chat
- llama-cpp
- gguf-my-repo
license_name: mrl
pipeline_tag: text-generation
datasets:
- anthracite-org/c2_logs_32k_mistral-v3_v1.2_no_system
- anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
- anthracite-org/kalo-opus-instruct-3k-filtered-no-system
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827_no_system
- anthracite-org/kalo_misc_part2_no_system
base_model: anthracite-org/magnum-v4-22b
model-index:
- name: magnum-v4-22b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 56.29
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 35.55
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 17.6
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.4
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.43
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.44
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
Triangle104/magnum-v4-22b-Q8_0-GGUF
This model was converted to GGUF format from anthracite-org/magnum-v4-22b
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
This model is fine-tuned on top of Mistral-Small-Instruct-2409.
Prompting
A typical input would look like this:
[INST] SYSTEM MESSAGE
USER MESSAGE[/INST] ASSISTANT MESSAGE[INST] USER MESSAGE[/INST]
Credits
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
We would also like to thank all members of Anthracite who made this finetune possible.
Datasets
anthracite-org/c2_logs_32k_mistral-v3_v1.2_no_system
anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
anthracite-org/kalo-opus-instruct-3k-filtered-no-system
anthracite-org/nopm_claude_writing_fixed
anthracite-org/kalo_opus_misc_240827_no_system
anthracite-org/kalo_misc_part2_no_system
Training
The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/magnum-v4-22b-Q8_0-GGUF --hf-file magnum-v4-22b-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/magnum-v4-22b-Q8_0-GGUF --hf-file magnum-v4-22b-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/magnum-v4-22b-Q8_0-GGUF --hf-file magnum-v4-22b-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/magnum-v4-22b-Q8_0-GGUF --hf-file magnum-v4-22b-q8_0.gguf -c 2048