Triangle104's picture
Update README.md
4e877e6 verified
---
language:
- en
license: other
library_name: transformers
tags:
- chat
- llama-cpp
- gguf-my-repo
license_name: mrl
pipeline_tag: text-generation
datasets:
- anthracite-org/c2_logs_32k_mistral-v3_v1.2_no_system
- anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
- anthracite-org/kalo-opus-instruct-3k-filtered-no-system
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827_no_system
- anthracite-org/kalo_misc_part2_no_system
base_model: anthracite-org/magnum-v4-22b
model-index:
- name: magnum-v4-22b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 56.29
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 35.55
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 17.6
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.4
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.43
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.44
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b
name: Open LLM Leaderboard
---
# Triangle104/magnum-v4-22b-Q6_K-GGUF
This model was converted to GGUF format from [`anthracite-org/magnum-v4-22b`](https://huggingface.co/anthracite-org/magnum-v4-22b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/anthracite-org/magnum-v4-22b) for more details on the model.
---
Model details:
-
This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
This model is fine-tuned on top of Mistral-Small-Instruct-2409.
Prompting
-
A typical input would look like this:
<s>[INST] SYSTEM MESSAGE
USER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST]
Credits
-
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
We would also like to thank all members of Anthracite who made this finetune possible.
Datasets
-
anthracite-org/c2_logs_32k_mistral-v3_v1.2_no_system
anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
anthracite-org/kalo-opus-instruct-3k-filtered-no-system
anthracite-org/nopm_claude_writing_fixed
anthracite-org/kalo_opus_misc_240827_no_system
anthracite-org/kalo_misc_part2_no_system
Training
-
The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/magnum-v4-22b-Q6_K-GGUF --hf-file magnum-v4-22b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/magnum-v4-22b-Q6_K-GGUF --hf-file magnum-v4-22b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/magnum-v4-22b-Q6_K-GGUF --hf-file magnum-v4-22b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/magnum-v4-22b-Q6_K-GGUF --hf-file magnum-v4-22b-q6_k.gguf -c 2048
```