|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: FourOhFour/Tulu-3.69-DPO-8B |
|
tags: |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`FourOhFour/Tulu-3.69-DPO-8B`](https://huggingface.co/FourOhFour/Tulu-3.69-DPO-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/FourOhFour/Tulu-3.69-DPO-8B) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
This is a DPO applied over Tulu-3.69-8B. This model is designed to |
|
roleplay and converse like a human chat partner. This model follows |
|
instructions well and excels at playing characters in a realistic and |
|
entertaining manner. |
|
|
|
|
|
For ease of use, try the Llama 3 instruct format. You may need to set a custom stop string for <|end_of_text|> |
|
|
|
|
|
For optimal performance I have found that a modified Tulu 3 instruct format is quite effective: |
|
|
|
|
|
<|system|> |
|
|
|
|
|
This is an instruction. |
|
|
|
|
|
<|end_of_text|> |
|
|
|
|
|
<|user|> |
|
|
|
|
|
This is the user input. |
|
|
|
|
|
<|assistant|> |
|
|
|
|
|
This is model output. |
|
|
|
|
|
<|end_of_text|> |
|
|
|
|
|
Further, if you want your bot to have a sense of time, you can set the last output prefix as such: |
|
|
|
|
|
<|system|> |
|
|
|
|
|
{{time}} {{weekday}} {{date}} |
|
|
|
|
|
<|end_of_text|> |
|
|
|
|
|
<|assistant|> |
|
|
|
|
|
Note: these macros may differ in your chosen inferencing frontend. Please correct accordingly. |
|
|
|
|
|
base_model: jeiku/Tulu-3.69-8B |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
hub_model_id: jeiku/tuludpo |
|
hub_strategy: "all_checkpoints" |
|
push_dataset_to_hub: |
|
hf_use_auth_token: true |
|
|
|
chat_template: llama3 |
|
rl: dpo |
|
datasets: |
|
- path: antiven0m/physical-reasoning-dpo |
|
type: llama3.prompt_pairs |
|
- path: nbeerbower/Purpura-DPO |
|
type: llama3.prompt_pairs |
|
- path: FourOhFour/Human_DPO_Emojis_Removed |
|
type: llama3.prompt_pairs |
|
|
|
shuffle_merged_datasets: true |
|
val_set_size: 0.005 |
|
output_dir: ./outputs/out |
|
|
|
sequence_len: 8192 |
|
sample_packing: false |
|
eval_sample_packing: false |
|
pad_to_sequence_len: false |
|
|
|
wandb_project: evil |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: evil |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 16 |
|
micro_batch_size: 2 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.000005 |
|
weight_decay: 0.05 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 2 |
|
eval_table_size: |
|
eval_max_new_tokens: |
|
saves_per_epoch: 1 |
|
|
|
debug: |
|
deepspeed: |
|
fsdp: |
|
fsdp_config: |
|
|
|
special_tokens: |
|
pad_token: <|finetune_right_pad_id|> |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048 |
|
``` |
|
|