license: apache-2.0
language:
- en
base_model: FourOhFour/Tulu-3.69-DPO-8B
tags:
- llama-cpp
- gguf-my-repo
Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF
This model was converted to GGUF format from FourOhFour/Tulu-3.69-DPO-8B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
This is a DPO applied over Tulu-3.69-8B. This model is designed to roleplay and converse like a human chat partner. This model follows instructions well and excels at playing characters in a realistic and entertaining manner.
For ease of use, try the Llama 3 instruct format. You may need to set a custom stop string for <|end_of_text|>
For optimal performance I have found that a modified Tulu 3 instruct format is quite effective:
<|system|>
This is an instruction.
<|end_of_text|>
<|user|>
This is the user input.
<|assistant|>
This is model output.
<|end_of_text|>
Further, if you want your bot to have a sense of time, you can set the last output prefix as such:
<|system|>
{{time}} {{weekday}} {{date}}
<|end_of_text|>
<|assistant|>
Note: these macros may differ in your chosen inferencing frontend. Please correct accordingly.
base_model: jeiku/Tulu-3.69-8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer
load_in_8bit: false load_in_4bit: false strict: false
hub_model_id: jeiku/tuludpo hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true
chat_template: llama3 rl: dpo datasets:
- path: antiven0m/physical-reasoning-dpo type: llama3.prompt_pairs
- path: nbeerbower/Purpura-DPO type: llama3.prompt_pairs
- path: FourOhFour/Human_DPO_Emojis_Removed type: llama3.prompt_pairs
shuffle_merged_datasets: true val_set_size: 0.005 output_dir: ./outputs/out
sequence_len: 8192 sample_packing: false eval_sample_packing: false pad_to_sequence_len: false
wandb_project: evil wandb_entity: wandb_watch: wandb_name: evil wandb_log_model:
gradient_accumulation_steps: 16 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 weight_decay: 0.05
train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true
gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true
warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: saves_per_epoch: 1
debug: deepspeed: fsdp: fsdp_config:
special_tokens: pad_token: <|finetune_right_pad_id|>
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048