File size: 4,079 Bytes
4bcf092 db99b50 4bcf092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
license: apache-2.0
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
- allura-org/shortstories_synthlabels
base_model: EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/EVA-Qwen2.5-7B-v0.1-Q5_K_M-GGUF
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1) for more details on the model.
---
Model details:
-
A RP/storywriting
specialist model, full-parameter finetune of Qwen2.5-7B on mixture of
synthetic and natural data.
It uses Celeste 70B
0.1 data mixture, greatly expanding it to improve
versatility,
creativity and "flavor" of the resulting model.
Version 0.1 notes:
Dataset was deduped
and cleaned from
version 0.0, and
learning rate was adjusted. Resulting model seems to be
stabler, and 0.0
problems with handling short inputs and min_p sampling
seem to be mostly
gone.
Will be retrained
once more, because this run crashed around e1.2 (out
of 3) (thanks,
DeepSpeed, really appreciate it), and it's still
somewhat
undertrained as a result.
Prompt format is
ChatML.
Recommended sampler
values:
Temperature: 0.87
Top-P: 0.81
Repetition Penalty:
1.03
Model appears to
prefer lower temperatures (at least 0.9 and lower). Min-P seems to
work now, as well.
Recommended
SillyTavern presets (via CalamitousFelicitousness):
Context
Instruct and System
Prompt
Training data:
Celeste 70B 0.1 data
mixture minus Opus Instruct subset. See that model's card for
details.
Kalomaze's
Opus_Instruct_25k dataset, filtered for refusals.
A subset (1k rows)
of ChatGPT-4o-WritingPrompts by Gryphe
A subset (2k rows)
of Sonnet3.5-Charcards-Roleplay by Gryphe
A cleaned subset
(~3k rows) of shortstories_synthlabels by Auri
Synthstruct and
SynthRP datasets by Epiculous
Training time and
hardware:
2 days on 4x3090Ti
(locally)
Model was trained by
Kearm and Auri.
Special thanks:
to Gryphe, Lemmy,
Kalomaze, Nopm and Epiculous for the data
to Alpindale for
helping with FFT config for Qwen2.5
and to
InfermaticAI's community for their continued support for our
endeavors
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/EVA-Qwen2.5-7B-v0.1-Q5_K_M-GGUF --hf-file eva-qwen2.5-7b-v0.1-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/EVA-Qwen2.5-7B-v0.1-Q5_K_M-GGUF --hf-file eva-qwen2.5-7b-v0.1-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/EVA-Qwen2.5-7B-v0.1-Q5_K_M-GGUF --hf-file eva-qwen2.5-7b-v0.1-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/EVA-Qwen2.5-7B-v0.1-Q5_K_M-GGUF --hf-file eva-qwen2.5-7b-v0.1-q5_k_m.gguf -c 2048
```
|