File size: 5,118 Bytes
5d4c1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b26a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d4c1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
base_model: Spestly/Athena-1-14B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
---

# Triangle104/Athena-1-14B-Q8_0-GGUF
This model was converted to GGUF format from [`Spestly/Athena-1-14B`](https://huggingface.co/Spestly/Athena-1-14B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Spestly/Athena-1-14B) for more details on the model.

---
Model details:
-
Athena 1 is a state-of-the-art language model fine-tuned from Qwen/Qwen2.5-14B-Instruct.
 Designed to excel in instruction-following tasks, Athena 1 delivers 
advanced capabilities in text generation, coding, mathematics, and 
long-context understanding. It is optimized for a wide variety of use 
cases, including conversational AI, structured data interpretation, and 
multilingual applications. It outperforms Ava 1.5 in many aspects making
 Athena-1 the superior model.




	
		
	

		Key Features
	




	
		
	

		πŸš€ Enhanced Capabilities
	



Instruction Following: Athena 1 has been fine-tuned
 for superior adherence to user prompts, making it ideal for chatbots, 
virtual assistants, and guided workflows.
Coding and Mathematics: Specialized fine-tuning enhances coding problem-solving and mathematical reasoning.
Long-Context Understanding: Handles input contexts up to 128K tokens and generates up to 8K tokens.



	
		
	

		🌐 Multilingual Support
	



Supports 29+ languages, including:


English, Chinese, French, Spanish, Portuguese, German, Italian, Russian
Japanese, Korean, Vietnamese, Thai, Arabic, and more.



	
		
	

		πŸ“Š Structured Data & Outputs
	



Structured Data Interpretation: Understands and processes structured formats like tables and JSON.
Structured Output Generation: Generates well-formatted outputs, including JSON, XML, and other structured formats.




	
		
	

		Model Details
	



Base Model: Qwen/Qwen2.5-14B-Instruct
Architecture: Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias.
Parameters: 14.7B total (13.1B non-embedding).
Layers: 48
Attention Heads: 40 for Q, 8 for KV.
Context Length: Up to 131,072 tokens.




	
		
	

		Applications
	



Athena 1 is designed for a wide range of use cases:


Conversational AI and chatbots.
Code generation, debugging, and explanation.
Mathematical problem-solving.
Large-document summarization and analysis.
Multilingual text generation and translation.
Structured data processing (e.g., tables, JSON).




	
		
	

		Quickstart
	



Below is an example of how to use Athena 1 for text generation:


huggingface-cli login

# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Spestly/Athena-1-14B")
pipe(messages)  

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-14B")
model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-14B")




	
		
	

		Performance
	



Athena 1 has been optimized for efficiency and performance on modern 
GPUs. For detailed evaluation metrics (e.g., throughput, accuracy, and 
memory requirements), refer to the Qwen2.5 performance benchmarks.




	
		
	

		Requirements
	



To use Athena 1, ensure the following:


Python >= 3.8
Transformers >= 4.37.0 (to support Qwen models)
PyTorch >= 2.0
GPU with BF16 support for optimal performance.



	
		
	

		Citation
	



If you use Athena 1 in your research or projects, please cite its base model Qwen2.5 as follows:


@misc{qwen2.5,
    title = {Qwen2.5: A Party of Foundation Models},
    url = {https://qwenlm.github.io/blog/qwen2.5/},
    author = {Qwen Team},
    month = {September},
    year = {2024}
}

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Athena-1-14B-Q8_0-GGUF --hf-file athena-1-14b-q8_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Athena-1-14B-Q8_0-GGUF --hf-file athena-1-14b-q8_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Athena-1-14B-Q8_0-GGUF --hf-file athena-1-14b-q8_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Athena-1-14B-Q8_0-GGUF --hf-file athena-1-14b-q8_0.gguf -c 2048
```