File size: 4,716 Bytes
66eb2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b6161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66eb2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
base_model: Spestly/Athena-1-1.5B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
---

# Triangle104/Athena-1-1.5B-Q4_K_M-GGUF
This model was converted to GGUF format from [`Spestly/Athena-1-1.5B`](https://huggingface.co/Spestly/Athena-1-1.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Spestly/Athena-1-1.5B) for more details on the model.

---
Model details:
-
Athena-1 1.5B is a fine-tuned, instruction-following large language model derived from Qwen/Qwen2.5-1.5B-Instruct.
 Designed for efficiency and high-quality text generation, Athena-1 1.5B
 maintains a compact size, making it ideal for real-world applications 
where performance and resource efficiency are critical, such as 
lightweight applications, conversational AI, and structured data tasks.

		Key Features
	
		⚡ Lightweight and Efficient
	
Compact Size: At just 1.5 billion parameters, Athena-1 1.5B offers excellent performance with reduced computational requirements.
Instruction Following: Fine-tuned for precise and reliable adherence to user prompts.
Coding and Mathematics: Proficient in solving coding challenges and handling mathematical tasks.

		📖 Long-Context Understanding
	
Context Length: Supports up to 32,768 tokens, enabling the processing of moderately lengthy documents or conversations.
Token Generation: Can generate up to 8K tokens of output.

		🌍 Multilingual Support
	
Supports 29+ languages, including:
English, Chinese, French, Spanish, Portuguese, German, Italian, Russian
Japanese, Korean, Vietnamese, Thai, Arabic, and more.

		📊 Structured Data & Outputs
        
Structured Data Interpretation: Processes structured formats like tables and JSON.
Structured Output Generation: Generates well-formatted outputs, including JSON and other structured formats.

		Model Details

Base Model: Qwen/Qwen2.5-1.5B-Instruct
Architecture: Transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias, and tied word embeddings.
Parameters: 1.5B total (Adjust non-embedding count if you have it).
Layers: (Adjust if different from the 3B model)
Attention Heads: (Adjust if different from the 3B model)
Context Length: Up to 32,768 tokens.

		Applications

Athena 1.5B is designed for a variety of real-world applications:

Conversational AI: Build fast, responsive, and lightweight chatbots.
Code Generation: Generate, debug, or explain code snippets.
Mathematical Problem Solving: Assist with calculations and reasoning.
Document Processing: Summarize and analyze moderately large documents.
Multilingual Applications: Support for global use cases with diverse language requirements.
Structured Data: Process and generate structured data, such as tables and JSON.

		Quickstart

Here’s how you can use Athena 1.5B for quick text generation:


# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Spestly/Athena-1-1.5B") # Update model name
print(pipe(messages))

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-1.5B") # Update model name
model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-1.5B") # Update model name

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Athena-1-1.5B-Q4_K_M-GGUF --hf-file athena-1-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Athena-1-1.5B-Q4_K_M-GGUF --hf-file athena-1-1.5b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Athena-1-1.5B-Q4_K_M-GGUF --hf-file athena-1-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Athena-1-1.5B-Q4_K_M-GGUF --hf-file athena-1-1.5b-q4_k_m.gguf -c 2048
```