RonanMcGovern commited on
Commit
a33a4c0
Β·
1 Parent(s): 26944a9

Commit gguf

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ language:
7
+ - en
8
+ tags:
9
+ - tinyllama
10
+ - gguf
11
+ ---
12
+
13
+ # GGUF model of the 1T token checkpoint
14
+
15
+ Original repo info below. And [link here](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.2-GGUF).
16
+
17
+ Video covering inference: [Youtube](https://youtu.be/T5l228844NI)
18
+
19
+ # TinyLlama-1.1B
20
+ </div>
21
+
22
+ https://github.com/jzhang38/TinyLlama
23
+
24
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.
25
+
26
+ <div align="center">
27
+ <img src="./TinyLlama_logo.png" width="300"/>
28
+ </div>
29
+
30
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
31
+
32
+ #### This Model
33
+ This is an intermediate checkpoint with 480K steps and 1007B tokens.
34
+
35
+
36
+ #### How to use
37
+ You will need the transformers>=4.31
38
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
39
+ ```python
40
+ from transformers import AutoTokenizer
41
+ import transformers
42
+ import torch
43
+ model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b"
44
+ tokenizer = AutoTokenizer.from_pretrained(model)
45
+ pipeline = transformers.pipeline(
46
+ "text-generation",
47
+ model=model,
48
+ torch_dtype=torch.float16,
49
+ device_map="auto",
50
+ )
51
+
52
+ sequences = pipeline(
53
+ 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.',
54
+ do_sample=True,
55
+ top_k=10,
56
+ num_return_sequences=1,
57
+ repetition_penalty=1.5,
58
+ eos_token_id=tokenizer.eos_token_id,
59
+ max_length=500,
60
+ )
61
+ for seq in sequences:
62
+ print(f"Result: {seq['generated_text']}")
63
+ ```