metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-invoices2
results: []
lilt-invoices2
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0032
- Amount: {'precision': 0.9982517482517482, 'recall': 1.0, 'f1': 0.9991251093613298, 'number': 571}
- Billingaddress: {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161}
- Description: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612}
- Invoicedate: {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172}
- Invoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 207}
- Quantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 545}
- Subtotal: {'precision': 1.0, 'recall': 0.9933774834437086, 'f1': 0.9966777408637874, 'number': 151}
- Totaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139}
- Unitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 492}
- Vendorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208}
- Overall Precision: 0.9994
- Overall Recall: 0.9994
- Overall F1: 0.9994
- Overall Accuracy: 0.9994
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Amount | Billingaddress | Description | Invoicedate | Invoicetotal | Quantity | Subtotal | Totaltax | Unitprice | Vendorname | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6178 | 4.35 | 100 | 0.1659 | {'precision': 0.8553654743390358, 'recall': 0.9632224168126094, 'f1': 0.9060955518945634, 'number': 571} | {'precision': 0.9815950920245399, 'recall': 0.9937888198757764, 'f1': 0.9876543209876544, 'number': 161} | {'precision': 0.9775641025641025, 'recall': 0.9967320261437909, 'f1': 0.9870550161812297, 'number': 612} | {'precision': 0.9940476190476191, 'recall': 0.9709302325581395, 'f1': 0.9823529411764705, 'number': 172} | {'precision': 0.8571428571428571, 'recall': 0.8985507246376812, 'f1': 0.8773584905660375, 'number': 207} | {'precision': 0.9890909090909091, 'recall': 0.998165137614679, 'f1': 0.993607305936073, 'number': 545} | {'precision': 0.7664233576642335, 'recall': 0.695364238410596, 'f1': 0.7291666666666665, 'number': 151} | {'precision': 0.8818897637795275, 'recall': 0.8057553956834532, 'f1': 0.8421052631578947, 'number': 139} | {'precision': 0.9809523809523809, 'recall': 0.8373983739837398, 'f1': 0.9035087719298245, 'number': 492} | {'precision': 0.9856459330143541, 'recall': 0.9903846153846154, 'f1': 0.988009592326139, 'number': 208} | 0.9368 | 0.9368 | 0.9368 | 0.9368 |
0.1653 | 8.7 | 200 | 0.0668 | {'precision': 0.9420529801324503, 'recall': 0.9964973730297724, 'f1': 0.9685106382978723, 'number': 571} | {'precision': 0.9876543209876543, 'recall': 0.9937888198757764, 'f1': 0.9907120743034055, 'number': 161} | {'precision': 1.0, 'recall': 0.9901960784313726, 'f1': 0.9950738916256158, 'number': 612} | {'precision': 0.9941520467836257, 'recall': 0.9883720930232558, 'f1': 0.9912536443148688, 'number': 172} | {'precision': 0.9140271493212669, 'recall': 0.9758454106280193, 'f1': 0.9439252336448598, 'number': 207} | {'precision': 0.9945255474452555, 'recall': 1.0, 'f1': 0.9972552607502287, 'number': 545} | {'precision': 0.9328358208955224, 'recall': 0.8278145695364238, 'f1': 0.8771929824561403, 'number': 151} | {'precision': 0.9615384615384616, 'recall': 0.8992805755395683, 'f1': 0.929368029739777, 'number': 139} | {'precision': 0.9978947368421053, 'recall': 0.9634146341463414, 'f1': 0.9803516028955533, 'number': 492} | {'precision': 1.0, 'recall': 0.9951923076923077, 'f1': 0.9975903614457832, 'number': 208} | 0.9770 | 0.9770 | 0.9770 | 0.9770 |
0.0676 | 13.04 | 300 | 0.0208 | {'precision': 0.9861111111111112, 'recall': 0.9947460595446584, 'f1': 0.990409764603313, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9941860465116279, 'recall': 0.9941860465116279, 'f1': 0.9941860465116279, 'number': 172} | {'precision': 0.9951219512195122, 'recall': 0.9855072463768116, 'f1': 0.9902912621359223, 'number': 207} | {'precision': 0.9963369963369964, 'recall': 0.998165137614679, 'f1': 0.9972502291475711, 'number': 545} | {'precision': 1.0, 'recall': 0.9602649006622517, 'f1': 0.9797297297297297, 'number': 151} | {'precision': 0.9787234042553191, 'recall': 0.9928057553956835, 'f1': 0.9857142857142858, 'number': 139} | {'precision': 0.9918864097363083, 'recall': 0.9939024390243902, 'f1': 0.9928934010152284, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9942 | 0.9942 | 0.9942 | 0.9942 |
0.0296 | 17.39 | 400 | 0.0067 | {'precision': 0.9982456140350877, 'recall': 0.9964973730297724, 'f1': 0.9973707274320772, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172} | {'precision': 0.9951923076923077, 'recall': 1.0, 'f1': 0.9975903614457832, 'number': 207} | {'precision': 0.9981684981684982, 'recall': 1.0, 'f1': 0.999083409715857, 'number': 545} | {'precision': 0.9933333333333333, 'recall': 0.9867549668874173, 'f1': 0.9900332225913622, 'number': 151} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139} | {'precision': 0.9979674796747967, 'recall': 0.9979674796747967, 'f1': 0.9979674796747967, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9982 | 0.9982 | 0.9982 | 0.9982 |
0.0143 | 21.74 | 500 | 0.0032 | {'precision': 0.9982517482517482, 'recall': 1.0, 'f1': 0.9991251093613298, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 207} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 545} | {'precision': 1.0, 'recall': 0.9933774834437086, 'f1': 0.9966777408637874, 'number': 151} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9994 | 0.9994 | 0.9994 | 0.9994 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3