PEFT
English
medical
File size: 15,474 Bytes
64f2b6e
 
 
5bc79ee
 
 
 
 
 
 
 
 
64f2b6e
 
 
 
5bc79ee
64f2b6e
 
 
 
 
 
5bc79ee
64f2b6e
 
5bc79ee
 
 
 
 
 
64f2b6e
 
 
 
b25b70d
 
 
64f2b6e
 
 
bc9ac74
64f2b6e
 
 
bc9ac74
64f2b6e
 
 
bc9ac74
64f2b6e
 
 
bc9ac74
 
 
 
 
64f2b6e
 
 
 
 
 
 
bc9ac74
64f2b6e
5c8d458
933497b
5c8d458
 
933497b
 
75687e5
 
 
 
933497b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8d458
 
 
 
933497b
5c8d458
933497b
 
e0163b4
5c8d458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
933497b
5c8d458
933497b
5c8d458
 
0a89b4a
5c8d458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
933497b
5c8d458
 
 
 
 
 
 
 
 
 
 
 
 
 
64f2b6e
 
 
 
bc9ac74
64f2b6e
 
 
bc9ac74
 
 
 
 
b25b70d
 
bc9ac74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f2b6e
 
 
 
bc9ac74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f2b6e
 
 
b25b70d
 
 
64f2b6e
 
 
 
 
 
 
b25b70d
 
 
 
 
64f2b6e
bc9ac74
 
 
2d52511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f2b6e
 
 
bc9ac74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f2b6e
 
bc9ac74
64f2b6e
 
 
 
 
bc9ac74
64f2b6e
 
 
bc9ac74
64f2b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bc79ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.1
license: mit
datasets:
- keivalya/MedQuad-MedicalQnADataset
language:
- en
metrics:
- bertscore
tags:
- medical
---

# Model Card for Model ID

This is a medicine-focussed mistral fine tuned using keivalya/MedQuad-MedicalQnADataset


## Model Details

### Model Description

Trying to get better at medical Q & A


- **Developed by:** [Tonic](https://huggingface.co/Tonic)
- **Shared by [optional]:** [Tonic](https://huggingface.co/Tonic)
- **Model type:** Mistral Fine-Tune
- **Language(s) (NLP):** English
- **License:** MIT2.0
- **Finetuned from model [optional]:** [mistralai/Mistral-7B-v0.1](https://huggingface.com/Mistralai/Mistral-7B-v0.1)

### Model Sources [optional]


- **Repository:** [Tonic/mistralmed](https://huggingface.co/Tonic/mistralmed)
- **Code :** [github](https://github.com/Josephrp/mistralmed/blob/main/finetuning.py)
- **Demo :** [Tonic/MistralMed_Chat](https://huggingface.co/Tonic/MistralMed_Chat)

## Uses

This model can be used the same way you normally use mistral

### Direct Use

This model can do better in medical question and answer scenarios.

### Downstream Use [optional]

This model is intended to be further fine tuned.

### Recommendations

- Do Not Use As Is
- Fine Tune This Model Further
- For Educational Purposes Only
- Benchmark your model usage
- Evaluate the model before use

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[Tonic/MistralMED_Chat](https://huggingface.co/Tonic/MistralMED_Chat)

```python
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import gradio as gr
import random
from textwrap import wrap
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
# Functions to Wrap the Prompt Correctly

def wrap_text(text, width=90):
    lines = text.split('\n')
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
    wrapped_text = '\n'.join(wrapped_lines)
    return wrapped_text

def multimodal_prompt(input_text, system_prompt="", max_length=512):
    """
    Generates text using a large language model, given a prompt and a device.
    Args:
        input_text: The input text to generate a response for.
        system_prompt: Optional system prompt.
        max_length: Maximum length of the generated text.
    Returns:
        A string containing the generated text.
    """
    # Modify the input text to include the desired format
    formatted_input = f"""<s>[INST]{input_text}[/INST]"""

    # Encode the input text
    encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
    model_inputs = encodeds.to(device)

    # Generate a response using the model
    output = model.generate(
        **model_inputs,
        max_length=max_length,
        use_cache=True,
        early_stopping=True,
        bos_token_id=model.config.bos_token_id,
        eos_token_id=model.config.eos_token_id,
        pad_token_id=model.config.eos_token_id,
        temperature=0.1,
        do_sample=True
    )

    # Decode the response
    response_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return response_text


# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Use the base model's ID
base_model_id = "mistralai/Mistral-7B-v0.1"
model_directory = "Tonic/mistralmed"

# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'


# Specify the configuration class for the model
#model_config = AutoConfig.from_pretrained(base_model_id)

# Load the PEFT model with the specified configuration
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)

# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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")
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")

class ChatBot:
    def __init__(self):
        self.history = []

    def predict(self, input_text):
        # Encode user input
        user_input_ids = tokenizer.encode(input_text, return_tensors="pt")

        # Concatenate the user input with chat history
        if len(self.history) > 0:
            chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
        else:
            chat_history_ids = user_input_ids

        # Generate a response using the PEFT model
        response = peft_model.generate(input_ids=chat_history_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)

        # Update chat history
        self.history = chat_history_ids

        # Decode and return the response
        response_text = tokenizer.decode(response[0], skip_special_tokens=True)
        return response_text

bot = ChatBot()

title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
examples = [["What is the boiling point of nitrogen?"]]

iface = gr.Interface(
    fn=bot.predict,
    title=title,
    description=description,
    examples=examples,
    inputs="text",
    outputs="text",
    theme="ParityError/Anime"
)

iface.launch()
```

## Training Details

### Training Data

[MedQuad](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset/viewer/default/train)

### Training Procedure 

Dataset({
    features: ['qtype', 'Question', 'Answer'],
    num_rows: 16407
})


#### Preprocessing [optional]

MistralForCausalLM(
  (model): MistralModel(
    (embed_tokens): Embedding(32000, 4096)
    (layers): ModuleList(
      (0-31): 32 x MistralDecoderLayer(
        (self_attn): MistralAttention(
          (q_proj): Linear4bit(in_features=4096, out_features=4096, bias=False)
          (k_proj): Linear4bit(in_features=4096, out_features=1024, bias=False)
          (v_proj): Linear4bit(in_features=4096, out_features=1024, bias=False)
          (o_proj): Linear4bit(in_features=4096, out_features=4096, bias=False)
          (rotary_emb): MistralRotaryEmbedding()
        )
        (mlp): MistralMLP(
          (gate_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
          (up_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
          (down_proj): Linear4bit(in_features=14336, out_features=4096, bias=False)
          (act_fn): SiLUActivation()
        )
        (input_layernorm): MistralRMSNorm()
        (post_attention_layernorm): MistralRMSNorm()
      )
    )
    (norm): MistralRMSNorm()
  )
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)


#### Training Hyperparameters

- **Training regime:** 
config = LoraConfig(
    r=8,
    lora_alpha=16,
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "o_proj",
        "gate_proj",
        "up_proj",
        "down_proj",
        "lm_head",
    ],
    bias="none",
    lora_dropout=0.05,  # Conventional
    task_type="CAUSAL_LM",
)

#### Speeds, Sizes, Times [optional]

- trainable params: 21260288 || all params: 3773331456 || trainable%: 0.5634354746703705
- TrainOutput(global_step=1000, training_loss=0.47226515007019043, metrics={'train_runtime': 3143.4141, 'train_samples_per_second': 2.545, 'train_steps_per_second': 0.318, 'total_flos': 1.75274075357184e+17, 'train_loss': 0.47226515007019043, 'epoch': 0.49})


## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** A100
- **Hours used:** 1
- **Cloud Provider:** Google
- **Compute Region:** East1
- **Carbon Emitted:** 0.09

## Training Results

 [1000/1000 52:20, Epoch 0/1]
 
| Step  | Training Loss |
|-------|--------------|
| 50    | 0.474200     |
| 100   | 0.523300     |
| 150   | 0.484500     |
| 200   | 0.482800     |
| 250   | 0.498800     |
| 300   | 0.451800     |
| 350   | 0.491800     |
| 400   | 0.488000     |
| 450   | 0.472800     |
| 500   | 0.460400     |
| 550   | 0.464700     |
| 600   | 0.484800     |
| 650   | 0.474600     |
| 700   | 0.477900     |
| 750   | 0.445300     |
| 800   | 0.431300     |
| 850   | 0.461500     |
| 900   | 0.451200     |
| 950   | 0.470800     |
| 1000  | 0.454900     |


### Model Architecture and Objective

PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): MistralForCausalLM(
      (model): MistralModel(
        (embed_tokens): Embedding(32000, 4096)
        (layers): ModuleList(
          (0-31): 32 x MistralDecoderLayer(
            (self_attn): MistralAttention(
              (q_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
              )
              (k_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=1024, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
              )
              (v_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=1024, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
              )
              (o_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
              )
              (rotary_emb): MistralRotaryEmbedding()
            )
            (mlp): MistralMLP(
              (gate_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=14336, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=4096, out_features=14336, bias=False)
              )
              (up_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=14336, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=4096, out_features=14336, bias=False)
              )
              (down_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=14336, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=14336, out_features=4096, bias=False)
              )
              (act_fn): SiLUActivation()
            )
            (input_layernorm): MistralRMSNorm()
            (post_attention_layernorm): MistralRMSNorm()
          )
        )
        (norm): MistralRMSNorm()
      )
      (lm_head): Linear(
        in_features=4096, out_features=32000, bias=False
        (lora_dropout): ModuleDict(
          (default): Dropout(p=0.05, inplace=False)
        )
        (lora_A): ModuleDict(
          (default): Linear(in_features=4096, out_features=8, bias=False)
        )
        (lora_B): ModuleDict(
          (default): Linear(in_features=8, out_features=32000, bias=False)
        )
        (lora_embedding_A): ParameterDict()
        (lora_embedding_B): ParameterDict()
      )
    )
  )
)
#### Hardware

A100



## Model Card Authors [optional]

[Tonic](https://huggingface.co/Tonic)

## Model Card Contact

[Tonic](https://huggingface.co/Tonic)


## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Framework versions


- PEFT 0.6.0.dev0