File size: 2,251 Bytes
0390494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: robbert0410_lrate2.5b32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert0410_lrate2.5b32
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3700
- Precisions: 0.7911
- Recall: 0.7515
- F-measure: 0.7562
- Accuracy: 0.8997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.8604 | 1.0 | 118 | 0.4897 | 0.8413 | 0.6506 | 0.6616 | 0.8535 |
| 0.4417 | 2.0 | 236 | 0.4031 | 0.8327 | 0.6978 | 0.6910 | 0.8714 |
| 0.3227 | 3.0 | 354 | 0.3781 | 0.8393 | 0.7154 | 0.7031 | 0.8841 |
| 0.2638 | 4.0 | 472 | 0.3463 | 0.7238 | 0.7280 | 0.7254 | 0.8962 |
| 0.2102 | 5.0 | 590 | 0.3579 | 0.7670 | 0.7343 | 0.7344 | 0.8955 |
| 0.1795 | 6.0 | 708 | 0.3640 | 0.7839 | 0.7433 | 0.7408 | 0.8966 |
| 0.1547 | 7.0 | 826 | 0.3659 | 0.7815 | 0.7454 | 0.7493 | 0.8995 |
| 0.1401 | 8.0 | 944 | 0.3700 | 0.7911 | 0.7515 | 0.7562 | 0.8997 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|