|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: robbert0210_lrate5b4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert0210_lrate5b4 |
|
|
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3947 |
|
- Precisions: 0.7931 |
|
- Recall: 0.7419 |
|
- F-measure: 0.7620 |
|
- Accuracy: 0.8995 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| |
|
| 0.71 | 1.0 | 942 | 0.4675 | 0.8146 | 0.6895 | 0.6795 | 0.8713 | |
|
| 0.3587 | 2.0 | 1884 | 0.3947 | 0.7931 | 0.7419 | 0.7620 | 0.8995 | |
|
| 0.2221 | 3.0 | 2826 | 0.5259 | 0.7885 | 0.7682 | 0.7650 | 0.9021 | |
|
| 0.1455 | 4.0 | 3768 | 0.5330 | 0.8071 | 0.7500 | 0.7698 | 0.9051 | |
|
| 0.0775 | 5.0 | 4710 | 0.5904 | 0.7773 | 0.7806 | 0.7768 | 0.9035 | |
|
| 0.0465 | 6.0 | 5652 | 0.6671 | 0.8375 | 0.7689 | 0.7890 | 0.9038 | |
|
| 0.0329 | 7.0 | 6594 | 0.6634 | 0.8002 | 0.7764 | 0.7864 | 0.9073 | |
|
| 0.0245 | 8.0 | 7536 | 0.6707 | 0.8325 | 0.7928 | 0.8087 | 0.9118 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|