File size: 2,241 Bytes
9052cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: robbert0210_lrate5b4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert0210_lrate5b4
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3947
- Precisions: 0.7931
- Recall: 0.7419
- F-measure: 0.7620
- Accuracy: 0.8995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.71 | 1.0 | 942 | 0.4675 | 0.8146 | 0.6895 | 0.6795 | 0.8713 |
| 0.3587 | 2.0 | 1884 | 0.3947 | 0.7931 | 0.7419 | 0.7620 | 0.8995 |
| 0.2221 | 3.0 | 2826 | 0.5259 | 0.7885 | 0.7682 | 0.7650 | 0.9021 |
| 0.1455 | 4.0 | 3768 | 0.5330 | 0.8071 | 0.7500 | 0.7698 | 0.9051 |
| 0.0775 | 5.0 | 4710 | 0.5904 | 0.7773 | 0.7806 | 0.7768 | 0.9035 |
| 0.0465 | 6.0 | 5652 | 0.6671 | 0.8375 | 0.7689 | 0.7890 | 0.9038 |
| 0.0329 | 7.0 | 6594 | 0.6634 | 0.8002 | 0.7764 | 0.7864 | 0.9073 |
| 0.0245 | 8.0 | 7536 | 0.6707 | 0.8325 | 0.7928 | 0.8087 | 0.9118 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|