File size: 3,018 Bytes
d3ae0d4 781b307 d3ae0d4 430a901 d3ae0d4 430a901 d3ae0d4 430a901 d3ae0d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: RobBERTBestModelOct11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert0410_lrate7.5b16
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5355
- Precisions: 0.8523
- Recall: 0.8173
- F-measure: 0.8307
- Accuracy: 0.9209
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.6127 | 1.0 | 236 | 0.3656 | 0.8687 | 0.6888 | 0.7011 | 0.8817 |
| 0.3078 | 2.0 | 472 | 0.3390 | 0.8253 | 0.7452 | 0.7612 | 0.8947 |
| 0.1742 | 3.0 | 708 | 0.3899 | 0.7602 | 0.7560 | 0.7469 | 0.8957 |
| 0.1242 | 4.0 | 944 | 0.4402 | 0.8560 | 0.7678 | 0.7861 | 0.9055 |
| 0.0749 | 5.0 | 1180 | 0.4206 | 0.8163 | 0.8139 | 0.8127 | 0.9121 |
| 0.0533 | 6.0 | 1416 | 0.4824 | 0.8257 | 0.7936 | 0.8060 | 0.9124 |
| 0.0366 | 7.0 | 1652 | 0.4927 | 0.8506 | 0.7956 | 0.8158 | 0.9176 |
| 0.0273 | 8.0 | 1888 | 0.5638 | 0.8631 | 0.7855 | 0.8093 | 0.9202 |
| 0.0206 | 9.0 | 2124 | 0.5507 | 0.8322 | 0.7957 | 0.8096 | 0.9141 |
| 0.0154 | 10.0 | 2360 | 0.5355 | 0.8523 | 0.8173 | 0.8307 | 0.9209 |
| 0.0105 | 11.0 | 2596 | 0.5812 | 0.8301 | 0.7961 | 0.8088 | 0.9162 |
| 0.0086 | 12.0 | 2832 | 0.6084 | 0.8357 | 0.8065 | 0.8192 | 0.9130 |
| 0.0046 | 13.0 | 3068 | 0.6035 | 0.8310 | 0.7948 | 0.8104 | 0.9137 |
| 0.0036 | 14.0 | 3304 | 0.6034 | 0.8223 | 0.7980 | 0.8074 | 0.9134 |
| 0.0043 | 15.0 | 3540 | 0.6146 | 0.8198 | 0.7869 | 0.7999 | 0.9120 |
| 0.0018 | 16.0 | 3776 | 0.6070 | 0.8244 | 0.7894 | 0.8029 | 0.9134 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|