ToastyPigeon commited on
Commit
b86387d
1 Parent(s): c351d37

Training in progress, step 177, checkpoint

Browse files
checkpoint-177/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-Small-Instruct-2409
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.0
checkpoint-177/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-Small-Instruct-2409",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.125,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "up_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-177/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aab6d525966384e299770c660bbc1a694cc435cc8f61690329aba858af9ce0a
3
+ size 763470136
checkpoint-177/global_step177/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4166f00acd4a8e9ab06dc98382ad3289e0df927dbb8da0e2753119f7e7ce0334
3
+ size 1152331664
checkpoint-177/global_step177/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b8f1a0a6b1a7bfd07a4186f80172afd851c6291876b080d72542e8fd2ebd2bf
3
+ size 1152331664
checkpoint-177/global_step177/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33cbf0c931165e711e1629fc9f178eb547ef50988bed724c3cef8223b2f9d8a6
3
+ size 348711830
checkpoint-177/global_step177/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f39a9d875f84b68190be0ac3a30bc4c3bd03257209a6d560e5e832772b46db6
3
+ size 348711830
checkpoint-177/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step177
checkpoint-177/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36fd52f115baab318e30a2a60b5c42cc1b1ac6875b9077a0356faa691b9a8b42
3
+ size 14512
checkpoint-177/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e51974ac915473991dcc1935223715c4a56069ae31edec6425733676b0746ad
3
+ size 14512
checkpoint-177/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f063f211035f6d0ac56b7f09a85e8cc0cf72870498c0626bd3dcf65436c13401
3
+ size 1064
checkpoint-177/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-177/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-177/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f95e28944c062244741268596badc900df86c7f5ded05088d2da22a7379e06
3
+ size 587583
checkpoint-177/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-177/trainer_state.json ADDED
@@ -0,0 +1,1304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.612987012987013,
5
+ "eval_steps": 59,
6
+ "global_step": 177,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.003463203463203463,
13
+ "grad_norm": 0.26726240342863167,
14
+ "learning_rate": 5e-06,
15
+ "loss": 1.8182,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.003463203463203463,
20
+ "eval_loss": 2.1284499168395996,
21
+ "eval_runtime": 293.5739,
22
+ "eval_samples_per_second": 0.341,
23
+ "eval_steps_per_second": 0.17,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.006926406926406926,
28
+ "grad_norm": 0.20034662456059837,
29
+ "learning_rate": 1e-05,
30
+ "loss": 1.9101,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01038961038961039,
35
+ "grad_norm": 0.23729183422165226,
36
+ "learning_rate": 1.5e-05,
37
+ "loss": 1.9238,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.013852813852813853,
42
+ "grad_norm": 0.1802988503389903,
43
+ "learning_rate": 2e-05,
44
+ "loss": 1.8901,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.017316017316017316,
49
+ "grad_norm": 0.18865054609738205,
50
+ "learning_rate": 2.5e-05,
51
+ "loss": 1.9419,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.02077922077922078,
56
+ "grad_norm": 0.2153919517946603,
57
+ "learning_rate": 3e-05,
58
+ "loss": 1.9561,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.024242424242424242,
63
+ "grad_norm": 0.23646989547590208,
64
+ "learning_rate": 3.5e-05,
65
+ "loss": 1.9231,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.027705627705627706,
70
+ "grad_norm": 0.1695483068973071,
71
+ "learning_rate": 4e-05,
72
+ "loss": 1.7199,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.03116883116883117,
77
+ "grad_norm": 0.17169305240230742,
78
+ "learning_rate": 4.5e-05,
79
+ "loss": 1.9328,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.03463203463203463,
84
+ "grad_norm": 0.1769763038127782,
85
+ "learning_rate": 5e-05,
86
+ "loss": 1.794,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.0380952380952381,
91
+ "grad_norm": 0.2739291337489883,
92
+ "learning_rate": 5.500000000000001e-05,
93
+ "loss": 1.8976,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04155844155844156,
98
+ "grad_norm": 0.1687629241124428,
99
+ "learning_rate": 6e-05,
100
+ "loss": 1.8382,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.045021645021645025,
105
+ "grad_norm": 0.170449291833281,
106
+ "learning_rate": 6.500000000000001e-05,
107
+ "loss": 1.8339,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.048484848484848485,
112
+ "grad_norm": 0.13830013122227536,
113
+ "learning_rate": 7e-05,
114
+ "loss": 1.7958,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.05194805194805195,
119
+ "grad_norm": 0.3120525656602162,
120
+ "learning_rate": 7.500000000000001e-05,
121
+ "loss": 1.8834,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.05541125541125541,
126
+ "grad_norm": 0.1740554404965808,
127
+ "learning_rate": 8e-05,
128
+ "loss": 1.643,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.05887445887445888,
133
+ "grad_norm": 0.13272024244803257,
134
+ "learning_rate": 8.5e-05,
135
+ "loss": 1.7635,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.06233766233766234,
140
+ "grad_norm": 0.13865354195619714,
141
+ "learning_rate": 9e-05,
142
+ "loss": 1.8596,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.0658008658008658,
147
+ "grad_norm": 0.17558880062270332,
148
+ "learning_rate": 9.5e-05,
149
+ "loss": 2.0007,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.06926406926406926,
154
+ "grad_norm": 0.18945613013501378,
155
+ "learning_rate": 0.0001,
156
+ "loss": 1.8773,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.07272727272727272,
161
+ "grad_norm": 0.11111588495801177,
162
+ "learning_rate": 9.999697629917739e-05,
163
+ "loss": 1.8568,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.0761904761904762,
168
+ "grad_norm": 0.2167792483298019,
169
+ "learning_rate": 9.998790560305473e-05,
170
+ "loss": 1.7966,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.07965367965367966,
175
+ "grad_norm": 0.17058063410322674,
176
+ "learning_rate": 9.997278913061298e-05,
177
+ "loss": 1.8296,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.08311688311688312,
182
+ "grad_norm": 0.22535134477990126,
183
+ "learning_rate": 9.995162891330504e-05,
184
+ "loss": 1.8398,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.08658008658008658,
189
+ "grad_norm": 0.13284807817034902,
190
+ "learning_rate": 9.992442779478275e-05,
191
+ "loss": 1.7536,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.09004329004329005,
196
+ "grad_norm": 0.1525380710864997,
197
+ "learning_rate": 9.989118943051471e-05,
198
+ "loss": 1.8267,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.09350649350649351,
203
+ "grad_norm": 0.38389909659403076,
204
+ "learning_rate": 9.985191828729519e-05,
205
+ "loss": 1.7526,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.09696969696969697,
210
+ "grad_norm": 0.1311981474834846,
211
+ "learning_rate": 9.98066196426436e-05,
212
+ "loss": 1.8789,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.10043290043290043,
217
+ "grad_norm": 0.14321635310477376,
218
+ "learning_rate": 9.97552995840955e-05,
219
+ "loss": 1.8666,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.1038961038961039,
224
+ "grad_norm": 0.131774192226824,
225
+ "learning_rate": 9.969796500838434e-05,
226
+ "loss": 1.8831,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.10735930735930736,
231
+ "grad_norm": 0.13710505067770457,
232
+ "learning_rate": 9.963462362051473e-05,
233
+ "loss": 1.6771,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.11082251082251082,
238
+ "grad_norm": 0.14077801488589667,
239
+ "learning_rate": 9.956528393272697e-05,
240
+ "loss": 1.8743,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.11428571428571428,
245
+ "grad_norm": 0.1606260003339504,
246
+ "learning_rate": 9.94899552633531e-05,
247
+ "loss": 1.7463,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.11774891774891776,
252
+ "grad_norm": 0.20844538767698467,
253
+ "learning_rate": 9.940864773556466e-05,
254
+ "loss": 1.8095,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.12121212121212122,
259
+ "grad_norm": 0.13051717096877563,
260
+ "learning_rate": 9.932137227601224e-05,
261
+ "loss": 1.743,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.12467532467532468,
266
+ "grad_norm": 0.1273670930785435,
267
+ "learning_rate": 9.922814061335716e-05,
268
+ "loss": 1.8164,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.12813852813852813,
273
+ "grad_norm": 0.14632843388917796,
274
+ "learning_rate": 9.912896527669518e-05,
275
+ "loss": 1.6922,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.1316017316017316,
280
+ "grad_norm": 0.1877238002560958,
281
+ "learning_rate": 9.902385959387282e-05,
282
+ "loss": 1.8563,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.13506493506493505,
287
+ "grad_norm": 0.12224962058562377,
288
+ "learning_rate": 9.891283768969633e-05,
289
+ "loss": 1.7657,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.13852813852813853,
294
+ "grad_norm": 0.1552638716363645,
295
+ "learning_rate": 9.879591448403333e-05,
296
+ "loss": 1.9331,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.141991341991342,
301
+ "grad_norm": 0.3572833915022296,
302
+ "learning_rate": 9.867310568980802e-05,
303
+ "loss": 1.6578,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.14545454545454545,
308
+ "grad_norm": 0.9532440952793683,
309
+ "learning_rate": 9.854442781088935e-05,
310
+ "loss": 1.8014,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.14891774891774892,
315
+ "grad_norm": 0.23015183389227475,
316
+ "learning_rate": 9.840989813987326e-05,
317
+ "loss": 1.6852,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.1523809523809524,
322
+ "grad_norm": 0.13909635416408656,
323
+ "learning_rate": 9.826953475575873e-05,
324
+ "loss": 1.7686,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.15584415584415584,
329
+ "grad_norm": 0.14004251970994497,
330
+ "learning_rate": 9.812335652151818e-05,
331
+ "loss": 1.8545,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.15930735930735931,
336
+ "grad_norm": 0.12804047264438845,
337
+ "learning_rate": 9.797138308156262e-05,
338
+ "loss": 1.8549,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.16277056277056276,
343
+ "grad_norm": 0.15888098268224185,
344
+ "learning_rate": 9.781363485910162e-05,
345
+ "loss": 1.8095,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.16623376623376623,
350
+ "grad_norm": 0.1753776918443242,
351
+ "learning_rate": 9.765013305339872e-05,
352
+ "loss": 1.7596,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.1696969696969697,
357
+ "grad_norm": 0.1542382423932175,
358
+ "learning_rate": 9.748089963692256e-05,
359
+ "loss": 1.9146,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.17316017316017315,
364
+ "grad_norm": 0.13847988655949817,
365
+ "learning_rate": 9.730595735239407e-05,
366
+ "loss": 1.7984,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.17662337662337663,
371
+ "grad_norm": 0.4071014591163337,
372
+ "learning_rate": 9.712532970973013e-05,
373
+ "loss": 1.7578,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.1800865800865801,
378
+ "grad_norm": 0.17428941847352164,
379
+ "learning_rate": 9.693904098288415e-05,
380
+ "loss": 1.8245,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.18354978354978355,
385
+ "grad_norm": 0.12001384773806148,
386
+ "learning_rate": 9.674711620658393e-05,
387
+ "loss": 1.8891,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.18701298701298702,
392
+ "grad_norm": 0.14927831515795748,
393
+ "learning_rate": 9.654958117296748e-05,
394
+ "loss": 1.7755,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.19047619047619047,
399
+ "grad_norm": 0.1328911465672095,
400
+ "learning_rate": 9.634646242811673e-05,
401
+ "loss": 1.8446,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.19393939393939394,
406
+ "grad_norm": 0.22985304080720362,
407
+ "learning_rate": 9.613778726849014e-05,
408
+ "loss": 1.8517,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.1974025974025974,
413
+ "grad_norm": 0.20379099943758505,
414
+ "learning_rate": 9.592358373725448e-05,
415
+ "loss": 1.6363,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.20086580086580086,
420
+ "grad_norm": 0.13109221546818925,
421
+ "learning_rate": 9.570388062051613e-05,
422
+ "loss": 1.7453,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.20432900432900433,
427
+ "grad_norm": 0.2032056177408556,
428
+ "learning_rate": 9.547870744345262e-05,
429
+ "loss": 1.8279,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.20432900432900433,
434
+ "eval_loss": 1.999111294746399,
435
+ "eval_runtime": 293.5683,
436
+ "eval_samples_per_second": 0.341,
437
+ "eval_steps_per_second": 0.17,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.2077922077922078,
442
+ "grad_norm": 0.17529821502651677,
443
+ "learning_rate": 9.524809446634491e-05,
444
+ "loss": 1.6943,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.21125541125541125,
449
+ "grad_norm": 0.12745995684364722,
450
+ "learning_rate": 9.501207268051065e-05,
451
+ "loss": 1.7711,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.21471861471861473,
456
+ "grad_norm": 0.13389107026895525,
457
+ "learning_rate": 9.47706738041396e-05,
458
+ "loss": 1.7418,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.21818181818181817,
463
+ "grad_norm": 0.121236748921413,
464
+ "learning_rate": 9.452393027803087e-05,
465
+ "loss": 1.7933,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.22164502164502164,
470
+ "grad_norm": 0.2677114062718937,
471
+ "learning_rate": 9.427187526123349e-05,
472
+ "loss": 1.6282,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.22510822510822512,
477
+ "grad_norm": 0.1315935010259272,
478
+ "learning_rate": 9.401454262659021e-05,
479
+ "loss": 1.8114,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.22857142857142856,
484
+ "grad_norm": 0.3087874359247871,
485
+ "learning_rate": 9.375196695618541e-05,
486
+ "loss": 1.8901,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.23203463203463204,
491
+ "grad_norm": 0.16625917755333441,
492
+ "learning_rate": 9.34841835366978e-05,
493
+ "loss": 1.7242,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.2354978354978355,
498
+ "grad_norm": 0.18601871730414293,
499
+ "learning_rate": 9.321122835465832e-05,
500
+ "loss": 1.8886,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.23896103896103896,
505
+ "grad_norm": 0.15023934879358058,
506
+ "learning_rate": 9.293313809161398e-05,
507
+ "loss": 1.9009,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.24242424242424243,
512
+ "grad_norm": 0.1898870406241783,
513
+ "learning_rate": 9.264995011919842e-05,
514
+ "loss": 1.8542,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.24588744588744588,
519
+ "grad_norm": 0.11719048639879068,
520
+ "learning_rate": 9.236170249410971e-05,
521
+ "loss": 1.7862,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.24935064935064935,
526
+ "grad_norm": 0.17652226951092279,
527
+ "learning_rate": 9.206843395299582e-05,
528
+ "loss": 1.8578,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.2528138528138528,
533
+ "grad_norm": 0.1587295825611423,
534
+ "learning_rate": 9.177018390724922e-05,
535
+ "loss": 1.7351,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.25627705627705627,
540
+ "grad_norm": 0.15111228997710152,
541
+ "learning_rate": 9.146699243771024e-05,
542
+ "loss": 1.7845,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.2597402597402597,
547
+ "grad_norm": 0.1476778598569357,
548
+ "learning_rate": 9.115890028928096e-05,
549
+ "loss": 1.7964,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.2632034632034632,
554
+ "grad_norm": 0.13451846228173517,
555
+ "learning_rate": 9.084594886544947e-05,
556
+ "loss": 1.7537,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.26666666666666666,
561
+ "grad_norm": 0.20501729418270834,
562
+ "learning_rate": 9.05281802227259e-05,
563
+ "loss": 1.7966,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.2701298701298701,
568
+ "grad_norm": 0.1343051700663291,
569
+ "learning_rate": 9.020563706499054e-05,
570
+ "loss": 1.7432,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.2735930735930736,
575
+ "grad_norm": 0.2576160107399793,
576
+ "learning_rate": 8.987836273775502e-05,
577
+ "loss": 1.7844,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.27705627705627706,
582
+ "grad_norm": 0.1611750355342202,
583
+ "learning_rate": 8.954640122233717e-05,
584
+ "loss": 1.7335,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.2805194805194805,
589
+ "grad_norm": 0.1535687636039628,
590
+ "learning_rate": 8.92097971299507e-05,
591
+ "loss": 1.8359,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.283982683982684,
596
+ "grad_norm": 0.14335525291232706,
597
+ "learning_rate": 8.886859569570986e-05,
598
+ "loss": 1.5791,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.28744588744588745,
603
+ "grad_norm": 0.12069704359106079,
604
+ "learning_rate": 8.852284277255054e-05,
605
+ "loss": 1.8349,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.2909090909090909,
610
+ "grad_norm": 0.14265174894073543,
611
+ "learning_rate": 8.817258482506821e-05,
612
+ "loss": 1.6968,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.2943722943722944,
617
+ "grad_norm": 0.15759187672377553,
618
+ "learning_rate": 8.781786892327372e-05,
619
+ "loss": 1.8609,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.29783549783549784,
624
+ "grad_norm": 0.15630758183987872,
625
+ "learning_rate": 8.745874273626769e-05,
626
+ "loss": 1.6969,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.3012987012987013,
631
+ "grad_norm": 0.23155350493633237,
632
+ "learning_rate": 8.70952545258344e-05,
633
+ "loss": 1.7134,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.3047619047619048,
638
+ "grad_norm": 0.12867694140850763,
639
+ "learning_rate": 8.672745313995617e-05,
640
+ "loss": 1.7176,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.30822510822510824,
645
+ "grad_norm": 0.14660527797094974,
646
+ "learning_rate": 8.635538800624865e-05,
647
+ "loss": 1.7618,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.3116883116883117,
652
+ "grad_norm": 0.31739145146977316,
653
+ "learning_rate": 8.597910912531857e-05,
654
+ "loss": 1.7678,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.3151515151515151,
659
+ "grad_norm": 0.12878964888578534,
660
+ "learning_rate": 8.559866706404422e-05,
661
+ "loss": 1.6939,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.31861471861471863,
666
+ "grad_norm": 0.1294085657296158,
667
+ "learning_rate": 8.521411294877998e-05,
668
+ "loss": 1.9087,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.3220779220779221,
673
+ "grad_norm": 0.13843213421574815,
674
+ "learning_rate": 8.482549845848562e-05,
675
+ "loss": 1.889,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.3255411255411255,
680
+ "grad_norm": 0.11234571905653916,
681
+ "learning_rate": 8.443287581778132e-05,
682
+ "loss": 1.761,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.329004329004329,
687
+ "grad_norm": 0.28802636544720606,
688
+ "learning_rate": 8.403629778992935e-05,
689
+ "loss": 1.7695,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.33246753246753247,
694
+ "grad_norm": 0.17442102072693685,
695
+ "learning_rate": 8.363581766974347e-05,
696
+ "loss": 1.868,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.3359307359307359,
701
+ "grad_norm": 0.18092190501025998,
702
+ "learning_rate": 8.323148927642676e-05,
703
+ "loss": 1.8138,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.3393939393939394,
708
+ "grad_norm": 0.14180736758315962,
709
+ "learning_rate": 8.282336694633897e-05,
710
+ "loss": 1.7451,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.34285714285714286,
715
+ "grad_norm": 0.1260334956751797,
716
+ "learning_rate": 8.241150552569461e-05,
717
+ "loss": 1.8159,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.3463203463203463,
722
+ "grad_norm": 0.28483954218537194,
723
+ "learning_rate": 8.199596036319213e-05,
724
+ "loss": 1.8712,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.3497835497835498,
729
+ "grad_norm": 0.3058596658282089,
730
+ "learning_rate": 8.157678730257599e-05,
731
+ "loss": 1.716,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.35324675324675325,
736
+ "grad_norm": 0.14780337095271387,
737
+ "learning_rate": 8.115404267513189e-05,
738
+ "loss": 1.5771,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.3567099567099567,
743
+ "grad_norm": 0.12983691765086658,
744
+ "learning_rate": 8.072778329211661e-05,
745
+ "loss": 1.7949,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.3601731601731602,
750
+ "grad_norm": 0.16953000547808353,
751
+ "learning_rate": 8.029806643712335e-05,
752
+ "loss": 1.7907,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.36363636363636365,
757
+ "grad_norm": 0.14609853698140796,
758
+ "learning_rate": 7.986494985838359e-05,
759
+ "loss": 1.8516,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.3670995670995671,
764
+ "grad_norm": 0.22124945234658114,
765
+ "learning_rate": 7.942849176100647e-05,
766
+ "loss": 1.694,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.37056277056277054,
771
+ "grad_norm": 0.15542150684527328,
772
+ "learning_rate": 7.898875079915673e-05,
773
+ "loss": 1.6885,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.37402597402597404,
778
+ "grad_norm": 0.22905935117923695,
779
+ "learning_rate": 7.854578606817258e-05,
780
+ "loss": 1.7547,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.3774891774891775,
785
+ "grad_norm": 0.1499752392806047,
786
+ "learning_rate": 7.809965709662383e-05,
787
+ "loss": 1.7788,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.38095238095238093,
792
+ "grad_norm": 0.15569825335048748,
793
+ "learning_rate": 7.765042383831217e-05,
794
+ "loss": 1.6898,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.38441558441558443,
799
+ "grad_norm": 0.23871935106992861,
800
+ "learning_rate": 7.719814666421421e-05,
801
+ "loss": 1.76,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.3878787878787879,
806
+ "grad_norm": 0.1525667688507407,
807
+ "learning_rate": 7.674288635436826e-05,
808
+ "loss": 1.7709,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.3913419913419913,
813
+ "grad_norm": 0.16436932375822805,
814
+ "learning_rate": 7.628470408970652e-05,
815
+ "loss": 1.8098,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.3948051948051948,
820
+ "grad_norm": 0.14429830327760923,
821
+ "learning_rate": 7.582366144383298e-05,
822
+ "loss": 1.7326,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.39826839826839827,
827
+ "grad_norm": 0.18442389673710763,
828
+ "learning_rate": 7.535982037474891e-05,
829
+ "loss": 1.878,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.4017316017316017,
834
+ "grad_norm": 0.1606647287097204,
835
+ "learning_rate": 7.489324321652635e-05,
836
+ "loss": 1.8083,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.4051948051948052,
841
+ "grad_norm": 0.21550638422267673,
842
+ "learning_rate": 7.442399267093145e-05,
843
+ "loss": 1.7426,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.40865800865800866,
848
+ "grad_norm": 0.1398337195854571,
849
+ "learning_rate": 7.395213179899797e-05,
850
+ "loss": 1.8002,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.40865800865800866,
855
+ "eval_loss": 1.9487916231155396,
856
+ "eval_runtime": 293.7231,
857
+ "eval_samples_per_second": 0.34,
858
+ "eval_steps_per_second": 0.17,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.4121212121212121,
863
+ "grad_norm": 0.25611170557780655,
864
+ "learning_rate": 7.34777240125529e-05,
865
+ "loss": 1.6664,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.4155844155844156,
870
+ "grad_norm": 0.17940479460583333,
871
+ "learning_rate": 7.300083306569465e-05,
872
+ "loss": 1.6816,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.41904761904761906,
877
+ "grad_norm": 0.15017902454932838,
878
+ "learning_rate": 7.252152304622533e-05,
879
+ "loss": 1.8012,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 0.4225108225108225,
884
+ "grad_norm": 0.14284666939949986,
885
+ "learning_rate": 7.203985836703833e-05,
886
+ "loss": 1.6545,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 0.42597402597402595,
891
+ "grad_norm": 0.1559473771327877,
892
+ "learning_rate": 7.155590375746192e-05,
893
+ "loss": 1.7871,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 0.42943722943722945,
898
+ "grad_norm": 0.14475597256584571,
899
+ "learning_rate": 7.106972425456059e-05,
900
+ "loss": 1.865,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 0.4329004329004329,
905
+ "grad_norm": 0.14244658764044832,
906
+ "learning_rate": 7.058138519439493e-05,
907
+ "loss": 1.8481,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 0.43636363636363634,
912
+ "grad_norm": 0.14693435900184554,
913
+ "learning_rate": 7.009095220324128e-05,
914
+ "loss": 1.8633,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 0.43982683982683984,
919
+ "grad_norm": 0.3739649239005357,
920
+ "learning_rate": 6.959849118877247e-05,
921
+ "loss": 1.6491,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 0.4432900432900433,
926
+ "grad_norm": 0.15353898219906464,
927
+ "learning_rate": 6.91040683312007e-05,
928
+ "loss": 1.7563,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 0.44675324675324674,
933
+ "grad_norm": 0.17393666770414995,
934
+ "learning_rate": 6.860775007438383e-05,
935
+ "loss": 1.6639,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 0.45021645021645024,
940
+ "grad_norm": 0.5088738245902021,
941
+ "learning_rate": 6.81096031168961e-05,
942
+ "loss": 1.6868,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 0.4536796536796537,
947
+ "grad_norm": 0.14154446443655647,
948
+ "learning_rate": 6.760969440306488e-05,
949
+ "loss": 1.7063,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 0.45714285714285713,
954
+ "grad_norm": 0.14714279411071443,
955
+ "learning_rate": 6.710809111397414e-05,
956
+ "loss": 1.6543,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 0.46060606060606063,
961
+ "grad_norm": 0.1457931614410346,
962
+ "learning_rate": 6.66048606584362e-05,
963
+ "loss": 1.7306,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 0.4640692640692641,
968
+ "grad_norm": 0.1820287707917239,
969
+ "learning_rate": 6.610007066393298e-05,
970
+ "loss": 1.7588,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 0.4675324675324675,
975
+ "grad_norm": 0.13406985602901073,
976
+ "learning_rate": 6.559378896752764e-05,
977
+ "loss": 1.6295,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 0.470995670995671,
982
+ "grad_norm": 0.1432972375320372,
983
+ "learning_rate": 6.508608360674825e-05,
984
+ "loss": 1.7229,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.47445887445887447,
989
+ "grad_norm": 0.1428289854884471,
990
+ "learning_rate": 6.457702281044451e-05,
991
+ "loss": 1.7604,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.4779220779220779,
996
+ "grad_norm": 0.19259569118792785,
997
+ "learning_rate": 6.406667498961853e-05,
998
+ "loss": 1.7896,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.48138528138528136,
1003
+ "grad_norm": 0.1864354045164866,
1004
+ "learning_rate": 6.355510872823144e-05,
1005
+ "loss": 1.7054,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.48484848484848486,
1010
+ "grad_norm": 0.16126945970699844,
1011
+ "learning_rate": 6.304239277398663e-05,
1012
+ "loss": 1.617,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.4883116883116883,
1017
+ "grad_norm": 0.16374325192757327,
1018
+ "learning_rate": 6.252859602909085e-05,
1019
+ "loss": 1.7218,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.49177489177489175,
1024
+ "grad_norm": 0.1952160819129351,
1025
+ "learning_rate": 6.201378754099481e-05,
1026
+ "loss": 1.6761,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 0.49523809523809526,
1031
+ "grad_norm": 0.21245873164185414,
1032
+ "learning_rate": 6.149803649311398e-05,
1033
+ "loss": 1.7334,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 0.4987012987012987,
1038
+ "grad_norm": 0.26373074560690185,
1039
+ "learning_rate": 6.0981412195531394e-05,
1040
+ "loss": 1.7975,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 0.5021645021645021,
1045
+ "grad_norm": 0.13130587484364126,
1046
+ "learning_rate": 6.046398407568321e-05,
1047
+ "loss": 1.6963,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 0.5056277056277056,
1052
+ "grad_norm": 0.2946558079919653,
1053
+ "learning_rate": 5.994582166902862e-05,
1054
+ "loss": 1.6738,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 0.509090909090909,
1059
+ "grad_norm": 0.1504401196101401,
1060
+ "learning_rate": 5.9426994609705167e-05,
1061
+ "loss": 1.7497,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 0.5125541125541125,
1066
+ "grad_norm": 0.1699306898333981,
1067
+ "learning_rate": 5.890757262117092e-05,
1068
+ "loss": 1.7837,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 0.516017316017316,
1073
+ "grad_norm": 0.17221685345492665,
1074
+ "learning_rate": 5.838762550683449e-05,
1075
+ "loss": 1.7598,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 0.5194805194805194,
1080
+ "grad_norm": 0.14578009779117443,
1081
+ "learning_rate": 5.786722314067443e-05,
1082
+ "loss": 1.7327,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.5229437229437229,
1087
+ "grad_norm": 0.12696754203014826,
1088
+ "learning_rate": 5.7346435457849077e-05,
1089
+ "loss": 1.8431,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.5264069264069264,
1094
+ "grad_norm": 0.2762648056037374,
1095
+ "learning_rate": 5.68253324452982e-05,
1096
+ "loss": 1.8256,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.5298701298701298,
1101
+ "grad_norm": 0.16006386814999288,
1102
+ "learning_rate": 5.630398413233771e-05,
1103
+ "loss": 1.5694,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.5333333333333333,
1108
+ "grad_norm": 0.26526907326241866,
1109
+ "learning_rate": 5.5782460581248605e-05,
1110
+ "loss": 1.6618,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 0.5367965367965368,
1115
+ "grad_norm": 0.16031072879740277,
1116
+ "learning_rate": 5.5260831877861595e-05,
1117
+ "loss": 1.7254,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 0.5402597402597402,
1122
+ "grad_norm": 0.33676205223750044,
1123
+ "learning_rate": 5.473916812213843e-05,
1124
+ "loss": 1.6954,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 0.5437229437229437,
1129
+ "grad_norm": 0.19851104745562503,
1130
+ "learning_rate": 5.421753941875139e-05,
1131
+ "loss": 1.6451,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 0.5471861471861472,
1136
+ "grad_norm": 0.14860904648265985,
1137
+ "learning_rate": 5.369601586766231e-05,
1138
+ "loss": 1.6706,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 0.5506493506493506,
1143
+ "grad_norm": 0.1918922225725335,
1144
+ "learning_rate": 5.3174667554701807e-05,
1145
+ "loss": 1.7438,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 0.5541125541125541,
1150
+ "grad_norm": 0.14075522683093092,
1151
+ "learning_rate": 5.265356454215095e-05,
1152
+ "loss": 1.7224,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 0.5575757575757576,
1157
+ "grad_norm": 0.15496076267116046,
1158
+ "learning_rate": 5.2132776859325595e-05,
1159
+ "loss": 1.782,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 0.561038961038961,
1164
+ "grad_norm": 0.14206902015954567,
1165
+ "learning_rate": 5.161237449316553e-05,
1166
+ "loss": 1.7243,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 0.5645021645021645,
1171
+ "grad_norm": 0.14890489490820047,
1172
+ "learning_rate": 5.109242737882909e-05,
1173
+ "loss": 1.7799,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 0.567965367965368,
1178
+ "grad_norm": 0.16028268624898823,
1179
+ "learning_rate": 5.057300539029484e-05,
1180
+ "loss": 1.4963,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.5714285714285714,
1185
+ "grad_norm": 0.2051022099288977,
1186
+ "learning_rate": 5.00541783309714e-05,
1187
+ "loss": 1.8039,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.5748917748917749,
1192
+ "grad_norm": 0.15327061149973434,
1193
+ "learning_rate": 4.953601592431679e-05,
1194
+ "loss": 1.7388,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.5783549783549784,
1199
+ "grad_norm": 0.16523339444574944,
1200
+ "learning_rate": 4.9018587804468616e-05,
1201
+ "loss": 1.729,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.5818181818181818,
1206
+ "grad_norm": 0.1727169607709046,
1207
+ "learning_rate": 4.8501963506886026e-05,
1208
+ "loss": 1.6802,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.5852813852813853,
1213
+ "grad_norm": 0.1597167200325283,
1214
+ "learning_rate": 4.798621245900522e-05,
1215
+ "loss": 1.6909,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.5887445887445888,
1220
+ "grad_norm": 0.16533426273811605,
1221
+ "learning_rate": 4.747140397090915e-05,
1222
+ "loss": 1.7411,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.5922077922077922,
1227
+ "grad_norm": 0.15690121637261828,
1228
+ "learning_rate": 4.6957607226013386e-05,
1229
+ "loss": 1.6433,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.5956709956709957,
1234
+ "grad_norm": 0.14430263110279673,
1235
+ "learning_rate": 4.6444891271768585e-05,
1236
+ "loss": 1.4937,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.5991341991341992,
1241
+ "grad_norm": 0.20258648466753146,
1242
+ "learning_rate": 4.593332501038149e-05,
1243
+ "loss": 1.7678,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.6025974025974026,
1248
+ "grad_norm": 0.21379822253391412,
1249
+ "learning_rate": 4.542297718955552e-05,
1250
+ "loss": 1.7766,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.6060606060606061,
1255
+ "grad_norm": 0.254670201330481,
1256
+ "learning_rate": 4.491391639325176e-05,
1257
+ "loss": 1.5055,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.6095238095238096,
1262
+ "grad_norm": 0.14982857678293512,
1263
+ "learning_rate": 4.440621103247237e-05,
1264
+ "loss": 1.811,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.612987012987013,
1269
+ "grad_norm": 0.3221501849805362,
1270
+ "learning_rate": 4.3899929336067026e-05,
1271
+ "loss": 1.7188,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.612987012987013,
1276
+ "eval_loss": 1.9185175895690918,
1277
+ "eval_runtime": 293.6672,
1278
+ "eval_samples_per_second": 0.341,
1279
+ "eval_steps_per_second": 0.17,
1280
+ "step": 177
1281
+ }
1282
+ ],
1283
+ "logging_steps": 1,
1284
+ "max_steps": 291,
1285
+ "num_input_tokens_seen": 0,
1286
+ "num_train_epochs": 1,
1287
+ "save_steps": 59,
1288
+ "stateful_callbacks": {
1289
+ "TrainerControl": {
1290
+ "args": {
1291
+ "should_epoch_stop": false,
1292
+ "should_evaluate": false,
1293
+ "should_log": false,
1294
+ "should_save": true,
1295
+ "should_training_stop": false
1296
+ },
1297
+ "attributes": {}
1298
+ }
1299
+ },
1300
+ "total_flos": 2.111476937313485e+16,
1301
+ "train_batch_size": 1,
1302
+ "trial_name": null,
1303
+ "trial_params": null
1304
+ }
checkpoint-177/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:843884dd10ab30b7127fadbe59f5e112466975c7b39447c70dc1e79f47c6795c
3
+ size 8184
checkpoint-177/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)