PY007's picture
Adding Evaluation Results (#7)
59f6f37 verified
|
raw
history blame
5.84 kB
metadata
language:
  - en
license: apache-2.0
datasets:
  - cerebras/SlimPajama-627B
  - bigcode/starcoderdata
model-index:
  - name: TinyLlama-1.1B-intermediate-step-1431k-3T
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 33.87
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 60.31
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 26.04
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 37.32
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 59.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.44
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
          name: Open LLM Leaderboard

TinyLlama-1.1B

https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐Ÿš€๐Ÿš€. The training has started on 2023-09-01.

We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

This Collection

This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.

Eval

Model Pretrain Tokens HellaSwag Obqa WinoGrande ARC_c ARC_e boolq piqa avg
Pythia-1.0B 300B 47.16 31.40 53.43 27.05 48.99 60.83 69.21 48.30
TinyLlama-1.1B-intermediate-step-50K-104b 103B 43.50 29.80 53.28 24.32 44.91 59.66 67.30 46.11
TinyLlama-1.1B-intermediate-step-240k-503b 503B 49.56 31.40 55.80 26.54 48.32 56.91 69.42 48.28
TinyLlama-1.1B-intermediate-step-480k-1007B 1007B 52.54 33.40 55.96 27.82 52.36 59.54 69.91 50.22
TinyLlama-1.1B-intermediate-step-715k-1.5T 1.5T 53.68 35.20 58.33 29.18 51.89 59.08 71.65 51.29
TinyLlama-1.1B-intermediate-step-955k-2T 2T 54.63 33.40 56.83 28.07 54.67 63.21 70.67 51.64
TinyLlama-1.1B-intermediate-step-1195k-2.5T 2.5T 58.96 34.40 58.72 31.91 56.78 63.21 73.07 53.86
TinyLlama-1.1B-intermediate-step-1431k-3T 3T 59.20 36.00 59.12 30.12 55.25 57.83 73.29 52.99

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 36.42
AI2 Reasoning Challenge (25-Shot) 33.87
HellaSwag (10-Shot) 60.31
MMLU (5-Shot) 26.04
TruthfulQA (0-shot) 37.32
Winogrande (5-shot) 59.51
GSM8k (5-shot) 1.44