File size: 2,791 Bytes
a66e470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-intro-verizon2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-intro-verizon2

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0327
- Accuracy: 1.0
- F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.3459        | 1.0   | 7    | 1.2548          | 0.5814   | 0.4575 |
| 1.1898        | 2.0   | 14   | 1.0488          | 0.7209   | 0.6261 |
| 1.1052        | 3.0   | 21   | 0.7911          | 0.7442   | 0.6506 |
| 0.7628        | 4.0   | 28   | 0.5534          | 1.0      | 1.0    |
| 0.6325        | 5.0   | 35   | 0.3608          | 1.0      | 1.0    |
| 0.303         | 6.0   | 42   | 0.2387          | 1.0      | 1.0    |
| 0.2297        | 7.0   | 49   | 0.1626          | 1.0      | 1.0    |
| 0.1663        | 8.0   | 56   | 0.1152          | 1.0      | 1.0    |
| 0.1232        | 9.0   | 63   | 0.0866          | 1.0      | 1.0    |
| 0.1056        | 10.0  | 70   | 0.0683          | 1.0      | 1.0    |
| 0.0802        | 11.0  | 77   | 0.0572          | 1.0      | 1.0    |
| 0.0589        | 12.0  | 84   | 0.0497          | 1.0      | 1.0    |
| 0.0561        | 13.0  | 91   | 0.0445          | 1.0      | 1.0    |
| 0.0567        | 14.0  | 98   | 0.0404          | 1.0      | 1.0    |
| 0.0457        | 15.0  | 105  | 0.0376          | 1.0      | 1.0    |
| 0.0417        | 16.0  | 112  | 0.0357          | 1.0      | 1.0    |
| 0.0412        | 17.0  | 119  | 0.0344          | 1.0      | 1.0    |
| 0.0389        | 18.0  | 126  | 0.0335          | 1.0      | 1.0    |
| 0.04          | 19.0  | 133  | 0.0329          | 1.0      | 1.0    |
| 0.0394        | 20.0  | 140  | 0.0327          | 1.0      | 1.0    |


### Framework versions

- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2