File size: 2,723 Bytes
12ebb90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7726bbb
12ebb90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7726bbb
12ebb90
 
 
7726bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ebb90
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-intro-verizon
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-intro-verizon

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0400
- Accuracy: 1.0
- F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1  |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|
| 0.3753        | 1.0   | 3    | 0.2877          | 1.0      | 1.0 |
| 0.278         | 2.0   | 6    | 0.2253          | 1.0      | 1.0 |
| 0.2366        | 3.0   | 9    | 0.1788          | 1.0      | 1.0 |
| 0.1721        | 4.0   | 12   | 0.1433          | 1.0      | 1.0 |
| 0.1531        | 5.0   | 15   | 0.1173          | 1.0      | 1.0 |
| 0.117         | 6.0   | 18   | 0.0980          | 1.0      | 1.0 |
| 0.108         | 7.0   | 21   | 0.0841          | 1.0      | 1.0 |
| 0.0916        | 8.0   | 24   | 0.0737          | 1.0      | 1.0 |
| 0.0843        | 9.0   | 27   | 0.0656          | 1.0      | 1.0 |
| 0.0701        | 10.0  | 30   | 0.0594          | 1.0      | 1.0 |
| 0.0683        | 11.0  | 33   | 0.0546          | 1.0      | 1.0 |
| 0.0599        | 12.0  | 36   | 0.0508          | 1.0      | 1.0 |
| 0.058         | 13.0  | 39   | 0.0478          | 1.0      | 1.0 |
| 0.0512        | 14.0  | 42   | 0.0454          | 1.0      | 1.0 |
| 0.0523        | 15.0  | 45   | 0.0437          | 1.0      | 1.0 |
| 0.0515        | 16.0  | 48   | 0.0423          | 1.0      | 1.0 |
| 0.0468        | 17.0  | 51   | 0.0413          | 1.0      | 1.0 |
| 0.0472        | 18.0  | 54   | 0.0406          | 1.0      | 1.0 |
| 0.0479        | 19.0  | 57   | 0.0401          | 1.0      | 1.0 |
| 0.0474        | 20.0  | 60   | 0.0400          | 1.0      | 1.0 |


### Framework versions

- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2