File size: 1,952 Bytes
6648711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-base-Balance_VietNam-aug_replace_tfidf
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-Balance_VietNam-aug_replace_tfidf

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8255
- Accuracy: 0.71
- F1: 0.7123

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.0682        | 1.0   | 87   | 0.8850          | 0.63     | 0.5828 |
| 0.8982        | 2.0   | 174  | 0.8205          | 0.68     | 0.6460 |
| 0.7637        | 3.0   | 261  | 0.7253          | 0.7      | 0.7013 |
| 0.6902        | 4.0   | 348  | 0.6887          | 0.71     | 0.7088 |
| 0.5525        | 5.0   | 435  | 0.6648          | 0.75     | 0.7480 |
| 0.4981        | 6.0   | 522  | 0.7215          | 0.75     | 0.7504 |
| 0.403         | 7.0   | 609  | 0.8010          | 0.72     | 0.7251 |
| 0.3255        | 8.0   | 696  | 0.8255          | 0.71     | 0.7123 |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3