File size: 1,996 Bytes
d4b8d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
model-index:
- name: KLTN_CSI_PhoBERRT_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# KLTN_CSI_PhoBERRT_v2

This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0007

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 41
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 369  | 0.1283          |
| 0.2465        | 2.0   | 738  | 0.0901          |
| 0.1381        | 3.0   | 1107 | 0.0591          |
| 0.1381        | 4.0   | 1476 | 0.0484          |
| 0.0916        | 5.0   | 1845 | 0.0397          |
| 0.0455        | 6.0   | 2214 | 0.0151          |
| 0.0335        | 7.0   | 2583 | 0.0170          |
| 0.0335        | 8.0   | 2952 | 0.0157          |
| 0.0164        | 9.0   | 3321 | 0.0036          |
| 0.01          | 10.0  | 3690 | 0.0018          |
| 0.0065        | 11.0  | 4059 | 0.0031          |
| 0.0065        | 12.0  | 4428 | 0.0030          |
| 0.0057        | 13.0  | 4797 | 0.0053          |
| 0.0071        | 14.0  | 5166 | 0.0007          |
| 0.0022        | 15.0  | 5535 | 0.0007          |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2