File size: 3,307 Bytes
76c1be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
model-index:
- name: CS505-Classifier-T4_predictLabel_a1_v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CS505-Classifier-T4_predictLabel_a1_v4
This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0046
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.98 | 48 | 1.0265 |
| No log | 1.96 | 96 | 0.5809 |
| No log | 2.94 | 144 | 0.3461 |
| No log | 3.92 | 192 | 0.2725 |
| No log | 4.9 | 240 | 0.2168 |
| No log | 5.88 | 288 | 0.1728 |
| No log | 6.86 | 336 | 0.1516 |
| No log | 7.84 | 384 | 0.1076 |
| No log | 8.82 | 432 | 0.0783 |
| No log | 9.8 | 480 | 0.0653 |
| 0.4162 | 10.78 | 528 | 0.0473 |
| 0.4162 | 11.76 | 576 | 0.0413 |
| 0.4162 | 12.73 | 624 | 0.0344 |
| 0.4162 | 13.71 | 672 | 0.0253 |
| 0.4162 | 14.69 | 720 | 0.0244 |
| 0.4162 | 15.67 | 768 | 0.0204 |
| 0.4162 | 16.65 | 816 | 0.0210 |
| 0.4162 | 17.63 | 864 | 0.0168 |
| 0.4162 | 18.61 | 912 | 0.0155 |
| 0.4162 | 19.59 | 960 | 0.0132 |
| 0.0375 | 20.57 | 1008 | 0.0130 |
| 0.0375 | 21.55 | 1056 | 0.0097 |
| 0.0375 | 22.53 | 1104 | 0.0088 |
| 0.0375 | 23.51 | 1152 | 0.0081 |
| 0.0375 | 24.49 | 1200 | 0.0080 |
| 0.0375 | 25.47 | 1248 | 0.0069 |
| 0.0375 | 26.45 | 1296 | 0.0065 |
| 0.0375 | 27.43 | 1344 | 0.0062 |
| 0.0375 | 28.41 | 1392 | 0.0060 |
| 0.0375 | 29.39 | 1440 | 0.0056 |
| 0.0375 | 30.37 | 1488 | 0.0055 |
| 0.0114 | 31.35 | 1536 | 0.0053 |
| 0.0114 | 32.33 | 1584 | 0.0052 |
| 0.0114 | 33.31 | 1632 | 0.0051 |
| 0.0114 | 34.29 | 1680 | 0.0049 |
| 0.0114 | 35.27 | 1728 | 0.0048 |
| 0.0114 | 36.24 | 1776 | 0.0048 |
| 0.0114 | 37.22 | 1824 | 0.0047 |
| 0.0114 | 38.2 | 1872 | 0.0047 |
| 0.0114 | 39.18 | 1920 | 0.0046 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|