File size: 10,791 Bytes
f24563f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
Transformer blocks for the LLM model.
"""

import jax
import jax.numpy as jnp
import flax.linen as nn
from typing import Optional, Tuple, Dict, Any, Callable, Union
import math

from model.attention import MultiHeadAttention, MultiQueryAttention, RotaryMultiQueryAttention


class FeedForward(nn.Module):
    """
    Feed-forward network with SwiGLU activation.
    
    Attributes:
        dim: Input and output dimension
        hidden_dim: Hidden dimension
        dropout_rate: Dropout probability
        dtype: Data type for computations
    """
    dim: int
    hidden_dim: int
    dropout_rate: float = 0.0
    dtype: jnp.dtype = jnp.float32
    
    def setup(self):
        self.gate_proj = nn.Dense(
            features=self.hidden_dim,
            dtype=self.dtype,
            kernel_init=nn.initializers.normal(stddev=0.02),
            name="gate_proj"
        )
        
        self.up_proj = nn.Dense(
            features=self.hidden_dim,
            dtype=self.dtype,
            kernel_init=nn.initializers.normal(stddev=0.02),
            name="up_proj"
        )
        
        self.down_proj = nn.Dense(
            features=self.dim,
            dtype=self.dtype,
            kernel_init=nn.initializers.normal(stddev=0.02),
            name="down_proj"
        )
        
        self.dropout = nn.Dropout(rate=self.dropout_rate)
    
    def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
        """
        Apply feed-forward network.
        
        Args:
            x: Input tensor [batch_size, seq_len, dim]
            deterministic: Whether to use deterministic operations (no dropout)
            
        Returns:
            Output tensor [batch_size, seq_len, dim]
        """
        # SwiGLU activation
        gate = self.gate_proj(x)
        gate = jax.nn.silu(gate)
        
        up = self.up_proj(x)
        
        # Element-wise multiplication
        hidden = gate * up
        
        # Project back to input dimension
        output = self.down_proj(hidden)
        
        # Apply dropout
        output = self.dropout(output, deterministic=deterministic)
        
        return output


class TransformerBlock(nn.Module):
    """
    Transformer block with attention and feed-forward network.
    
    Attributes:
        dim: Hidden dimension
        num_heads: Number of attention heads
        hidden_dim: Hidden dimension in feed-forward network
        dropout_rate: Dropout probability
        attention_dropout_rate: Dropout probability for attention
        layer_norm_epsilon: Epsilon for layer normalization
        dtype: Data type for computations
    """
    dim: int
    num_heads: int
    hidden_dim: int
    dropout_rate: float = 0.0
    attention_dropout_rate: float = 0.0
    layer_norm_epsilon: float = 1e-5
    dtype: jnp.dtype = jnp.float32
    
    def setup(self):
        # Layer normalization
        self.input_layernorm = nn.LayerNorm(
            epsilon=self.layer_norm_epsilon,
            dtype=self.dtype,
            name="input_layernorm"
        )
        
        self.post_attention_layernorm = nn.LayerNorm(
            epsilon=self.layer_norm_epsilon,
            dtype=self.dtype,
            name="post_attention_layernorm"
        )
        
        # Attention
        self.attention = MultiHeadAttention(
            dim=self.dim,
            num_heads=self.num_heads,
            dropout_rate=self.attention_dropout_rate,
            dtype=self.dtype,
            name="attention"
        )
        
        # Feed-forward network
        self.feed_forward = FeedForward(
            dim=self.dim,
            hidden_dim=self.hidden_dim,
            dropout_rate=self.dropout_rate,
            dtype=self.dtype,
            name="feed_forward"
        )
        
        # Dropout
        self.dropout = nn.Dropout(rate=self.dropout_rate)
    
    def __call__(
        self,
        hidden_states: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        position_ids: Optional[jnp.ndarray] = None,
        past_key_value: Optional[Tuple[jnp.ndarray, jnp.ndarray]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        deterministic: bool = True,
    ) -> Tuple[jnp.ndarray, ...]:
        """
        Apply transformer block.
        
        Args:
            hidden_states: Input tensor [batch_size, seq_len, dim]
            attention_mask: Attention mask [batch_size, 1, seq_len, seq_len]
            position_ids: Position indices [batch_size, seq_len]
            past_key_value: Cached key and value tensors for incremental decoding
            output_attentions: Whether to return attention weights
            use_cache: Whether to use cached key and values
            deterministic: Whether to use deterministic operations (no dropout)
            
        Returns:
            Tuple of (output, attention_weights, present_key_value)
        """
        # Self-attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        
        attention_outputs = self.attention(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            deterministic=deterministic,
        )
        
        hidden_states = attention_outputs[0]
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        hidden_states = residual + hidden_states
        
        # Feed-forward network
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        
        hidden_states = self.feed_forward(hidden_states, deterministic=deterministic)
        hidden_states = residual + hidden_states
        
        outputs = (hidden_states,) + attention_outputs[1:]
        
        return outputs


class TransformerLayer(nn.Module):
    """
    Transformer layer with multi-query attention and feed-forward network.
    
    Attributes:
        dim: Hidden dimension
        num_query_heads: Number of query heads
        num_kv_heads: Number of key-value heads
        hidden_dim: Hidden dimension in feed-forward network
        max_seq_len: Maximum sequence length for RoPE
        dropout_rate: Dropout probability
        attention_dropout_rate: Dropout probability for attention
        layer_norm_epsilon: Epsilon for layer normalization
        use_rope: Whether to use rotary position embeddings
        dtype: Data type for computations
    """
    dim: int
    num_query_heads: int
    num_kv_heads: int = 1
    hidden_dim: int = None
    max_seq_len: int = 4096
    dropout_rate: float = 0.0
    attention_dropout_rate: float = 0.0
    layer_norm_epsilon: float = 1e-5
    use_rope: bool = True
    dtype: jnp.dtype = jnp.float32
    
    def setup(self):
        # Set hidden dimension if not provided
        if self.hidden_dim is None:
            self.actual_hidden_dim = 4 * self.dim
        else:
            self.actual_hidden_dim = self.hidden_dim
        
        # Layer normalization
        self.input_layernorm = nn.LayerNorm(
            epsilon=self.layer_norm_epsilon,
            dtype=self.dtype,
            name="input_layernorm"
        )
        
        self.post_attention_layernorm = nn.LayerNorm(
            epsilon=self.layer_norm_epsilon,
            dtype=self.dtype,
            name="post_attention_layernorm"
        )
        
        # Attention
        if self.use_rope:
            self.attention = RotaryMultiQueryAttention(
                dim=self.dim,
                num_query_heads=self.num_query_heads,
                num_kv_heads=self.num_kv_heads,
                max_seq_len=self.max_seq_len,
                dropout_rate=self.attention_dropout_rate,
                dtype=self.dtype,
                name="attention"
            )
        else:
            self.attention = MultiQueryAttention(
                dim=self.dim,
                num_query_heads=self.num_query_heads,
                num_kv_heads=self.num_kv_heads,
                dropout_rate=self.attention_dropout_rate,
                dtype=self.dtype,
                name="attention"
            )
        
        # Feed-forward network
        self.feed_forward = FeedForward(
            dim=self.dim,
            hidden_dim=self.actual_hidden_dim,
            dropout_rate=self.dropout_rate,
            dtype=self.dtype,
            name="feed_forward"
        )
        
        # Dropout
        self.dropout = nn.Dropout(rate=self.dropout_rate)
    
    def __call__(
        self,
        hidden_states: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        position_ids: Optional[jnp.ndarray] = None,
        past_key_value: Optional[Tuple[jnp.ndarray, jnp.ndarray]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        deterministic: bool = True,
    ) -> Tuple[jnp.ndarray, ...]:
        """
        Apply transformer layer.
        
        Args:
            hidden_states: Input tensor [batch_size, seq_len, dim]
            attention_mask: Attention mask [batch_size, 1, seq_len, seq_len]
            position_ids: Position indices [batch_size, seq_len]
            past_key_value: Cached key and value tensors for incremental decoding
            output_attentions: Whether to return attention weights
            use_cache: Whether to use cached key and values
            deterministic: Whether to use deterministic operations (no dropout)
            
        Returns:
            Tuple of (output, attention_weights, present_key_value)
        """
        # Self-attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        
        attention_outputs = self.attention(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            deterministic=deterministic,
        )
        
        hidden_states = attention_outputs[0]
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        hidden_states = residual + hidden_states
        
        # Feed-forward network
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        
        hidden_states = self.feed_forward(hidden_states, deterministic=deterministic)
        hidden_states = residual + hidden_states
        
        outputs = (hidden_states,) + attention_outputs[1:]
        
        return outputs