File size: 2,842 Bytes
6547621
e2fca9e
 
 
a6384aa
e2fca9e
 
a6384aa
 
e2fca9e
 
 
 
 
a6384aa
e2fca9e
 
 
 
 
 
 
a6384aa
48c5874
a6384aa
6547621
 
e2fca9e
 
6547621
48c5874
e2fca9e
6547621
e2fca9e
 
48c5874
 
6547621
e2fca9e
6547621
e2fca9e
6547621
e2fca9e
6547621
e2fca9e
6547621
e2fca9e
6547621
e2fca9e
6547621
e2fca9e
6547621
e2fca9e
6547621
e2fca9e
48c5874
e2fca9e
 
 
 
 
 
 
 
 
 
6547621
e2fca9e
6547621
e2fca9e
 
48c5874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6547621
 
e2fca9e
6547621
e2fca9e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
base_model: facebook/wav2vec2-base
datasets:
- vivos
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-vivos-asr
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: vivos
      type: vivos
      config: default
      split: None
      args: default
    metrics:
    - type: wer
      value: 0.46007853403141363
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/khackho01125-CMC-University/Wav2Vec2/runs/abof73b7)
# wav2vec2-vivos-asr

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9791
- Wer: 0.4601

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.0539        | 2.0   | 292  | 3.6334          | 1.0    |
| 3.4484        | 4.0   | 584  | 3.5348          | 1.0    |
| 3.2755        | 6.0   | 876  | 2.4805          | 0.9952 |
| 1.6061        | 8.0   | 1168 | 1.2597          | 0.7021 |
| 1.0363        | 10.0  | 1460 | 1.0996          | 0.6158 |
| 0.8403        | 12.0  | 1752 | 0.9858          | 0.5573 |
| 0.726         | 14.0  | 2044 | 0.9625          | 0.5302 |
| 0.6721        | 16.0  | 2336 | 0.9326          | 0.5124 |
| 0.5697        | 18.0  | 2628 | 0.9399          | 0.5012 |
| 0.5168        | 20.0  | 2920 | 0.9625          | 0.4930 |
| 0.4663        | 22.0  | 3212 | 0.9432          | 0.4751 |
| 0.4408        | 24.0  | 3504 | 0.9822          | 0.4723 |
| 0.4231        | 26.0  | 3796 | 0.9629          | 0.4643 |
| 0.3855        | 28.0  | 4088 | 0.9744          | 0.4639 |
| 0.3671        | 30.0  | 4380 | 0.9791          | 0.4601 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1