File size: 2,656 Bytes
e1bc4cb
 
 
4ec51d3
 
 
 
 
 
 
d55be37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: cc-by-4.0
---

[PyTorch FasterRCNN](https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html#torchvision.models.detection.fasterrcnn_resnet50_fpn) with ResNet50 backbone finetuned on grayscale COCO.

The COCO images were transformed to grayscale using PIL. The hyperparameters and epochs were all kept the same as the implementation for [PyTorch](https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn).

Can be used as pretrained model for multispectral imaging as suggested in this [paper](https://ceur-ws.org/Vol-2771/AICS2020_paper_50.pdf).

The file is given as a state_dict. Thus to initialize the model run:

```
# Load pretrained weights
state_dict = torch.load(model_path, map_location=torch.device('cpu'))['model']
# Load torchvision model
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights='DEFAULT')
# Adapt input convolution
model.backbone.body.conv1 = torch.nn.Conv2d(1, 64,
                            kernel_size=(7, 7), stride=(2, 2),
                            padding=(3, 3), bias=False).requires_grad_(True)
model.load_state_dict(state_dict)
```

If its going to be used for multispectral data, edit the first layer and duplicate the weights:

```
state_dict = torch.load(model_path, map_location=torch.device('cpu'))['model']

# Duplicate the weights
conv1_weight = state_dict['backbone.body.conv1.weight']
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
repeat = int(math.ceil(in_chans / 3))
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
#conv1_weight *= (3 / float(in_chans))
conv1_weight = conv1_weight.to(conv1_type)
state_dict['backbone.body.conv1.weight'] = conv1_weight

model.backbone.body.conv1 = torch.nn.Conv2d(in_chans, 64,
                                            kernel_size=(7, 7), stride=(2, 2),
                                            padding=(3, 3), bias=False).requires_grad_(True)
model.load_state_dict(state_dict)
```

For Faster-RCNN the input transform may need to be adapted. Here is an example:

```
coco_mean = [0.5] * in_chans
coco_std = [0.25] * in_chans
if in_chans > 3:
    coco_mean[:3] = [0.485, 0.456, 0.406]
    coco_std[:3] = [0.229, 0.224, 0.225]
transform = torchvision.models.detection.transform.GeneralizedRCNNTransform(min_size=800,
                                                                            max_size=1333,
                                                                            image_mean=coco_mean,
                                                                            image_std=coco_std)
```