File size: 1,993 Bytes
bae0766 db445d2 bae0766 db445d2 bae0766 db445d2 bae0766 db445d2 bae0766 db445d2 bae0766 db445d2 bae0766 db445d2 bae0766 db445d2 bae0766 db445d2 bae0766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- common_voice_9_0
metrics:
- wer
model-index:
- name: cv9-special-batch12-lr6-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_9_0
type: common_voice_9_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 14.345525649873474
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cv9-special-batch12-lr6-small
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_9_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2595
- Wer: 14.3455
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 12
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3456 | 1.45 | 1000 | 0.2877 | 16.0571 |
| 0.2388 | 2.9 | 2000 | 0.2658 | 15.0449 |
| 0.2224 | 4.35 | 3000 | 0.2610 | 14.4145 |
| 0.1881 | 5.81 | 4000 | 0.2589 | 14.3869 |
| 0.1783 | 7.26 | 5000 | 0.2595 | 14.3455 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|