TheBloke commited on
Commit
f2c46ee
·
1 Parent(s): 6bf05c9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +551 -0
README.md ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: FelixChao/vicuna-33b-coder
3
+ inference: false
4
+ license: other
5
+ model-index:
6
+ - name: Vicuna-Coder
7
+ results:
8
+ - dataset:
9
+ name: MultiPL-HumanEval (Python)
10
+ type: nuprl/MultiPL-E
11
+ metrics:
12
+ - name: pass@1
13
+ type: pass@1
14
+ value: 0.274
15
+ verified: false
16
+ task:
17
+ type: text-generation
18
+ model_creator: Chao Chang-Yu
19
+ model_name: Vicuna 33B Coder
20
+ model_type: llama
21
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
22
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
23
+ USER: {prompt} ASSISTANT:
24
+
25
+ '
26
+ quantized_by: TheBloke
27
+ tags:
28
+ - code
29
+ ---
30
+ <!-- markdownlint-disable MD041 -->
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # Vicuna 33B Coder - GPTQ
50
+ - Model creator: [Chao Chang-Yu](https://huggingface.co/FelixChao)
51
+ - Original model: [Vicuna 33B Coder](https://huggingface.co/FelixChao/vicuna-33b-coder)
52
+
53
+ <!-- description start -->
54
+ ## Description
55
+
56
+ This repo contains GPTQ model files for [Chao Chang-Yu's Vicuna 33B Coder](https://huggingface.co/FelixChao/vicuna-33b-coder).
57
+
58
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
59
+
60
+ <!-- description end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/vicuna-33B-coder-AWQ)
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-33B-coder-GGUF)
67
+ * [Chao Chang-Yu's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/FelixChao/vicuna-33b-coder)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: Vicuna
72
+
73
+ ```
74
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
75
+
76
+ ```
77
+
78
+ <!-- prompt-template end -->
79
+
80
+
81
+ <!-- README_GPTQ.md-provided-files start -->
82
+ ## Provided files, and GPTQ parameters
83
+
84
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
85
+
86
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
87
+
88
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
89
+
90
+ <details>
91
+ <summary>Explanation of GPTQ parameters</summary>
92
+
93
+ - Bits: The bit size of the quantised model.
94
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
95
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
96
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
97
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
98
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
99
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
100
+
101
+ </details>
102
+
103
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
104
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
105
+ | [main](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 16.94 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
106
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 17.55 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
107
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 19.44 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
108
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 13.51 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
109
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 32.99 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
110
+ | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 15.30 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
111
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 33.73 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
112
+
113
+ <!-- README_GPTQ.md-provided-files end -->
114
+
115
+ <!-- README_GPTQ.md-download-from-branches start -->
116
+ ## How to download, including from branches
117
+
118
+ ### In text-generation-webui
119
+
120
+ To download from the `main` branch, enter `TheBloke/vicuna-33B-coder-GPTQ` in the "Download model" box.
121
+
122
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/vicuna-33B-coder-GPTQ:gptq-4bit-128g-actorder_True`
123
+
124
+ ### From the command line
125
+
126
+ I recommend using the `huggingface-hub` Python library:
127
+
128
+ ```shell
129
+ pip3 install huggingface-hub
130
+ ```
131
+
132
+ To download the `main` branch to a folder called `vicuna-33B-coder-GPTQ`:
133
+
134
+ ```shell
135
+ mkdir vicuna-33B-coder-GPTQ
136
+ huggingface-cli download TheBloke/vicuna-33B-coder-GPTQ --local-dir vicuna-33B-coder-GPTQ --local-dir-use-symlinks False
137
+ ```
138
+
139
+ To download from a different branch, add the `--revision` parameter:
140
+
141
+ ```shell
142
+ mkdir vicuna-33B-coder-GPTQ
143
+ huggingface-cli download TheBloke/vicuna-33B-coder-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir vicuna-33B-coder-GPTQ --local-dir-use-symlinks False
144
+ ```
145
+
146
+ <details>
147
+ <summary>More advanced huggingface-cli download usage</summary>
148
+
149
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
150
+
151
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
152
+
153
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
154
+
155
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
156
+
157
+ ```shell
158
+ pip3 install hf_transfer
159
+ ```
160
+
161
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
162
+
163
+ ```shell
164
+ mkdir vicuna-33B-coder-GPTQ
165
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/vicuna-33B-coder-GPTQ --local-dir vicuna-33B-coder-GPTQ --local-dir-use-symlinks False
166
+ ```
167
+
168
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
169
+ </details>
170
+
171
+ ### With `git` (**not** recommended)
172
+
173
+ To clone a specific branch with `git`, use a command like this:
174
+
175
+ ```shell
176
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ
177
+ ```
178
+
179
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
180
+
181
+ <!-- README_GPTQ.md-download-from-branches end -->
182
+ <!-- README_GPTQ.md-text-generation-webui start -->
183
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
184
+
185
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
186
+
187
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
188
+
189
+ 1. Click the **Model tab**.
190
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/vicuna-33B-coder-GPTQ`.
191
+
192
+ - To download from a specific branch, enter for example `TheBloke/vicuna-33B-coder-GPTQ:gptq-4bit-128g-actorder_True`
193
+ - see Provided Files above for the list of branches for each option.
194
+
195
+ 3. Click **Download**.
196
+ 4. The model will start downloading. Once it's finished it will say "Done".
197
+ 5. In the top left, click the refresh icon next to **Model**.
198
+ 6. In the **Model** dropdown, choose the model you just downloaded: `vicuna-33B-coder-GPTQ`
199
+ 7. The model will automatically load, and is now ready for use!
200
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
201
+
202
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
203
+
204
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
205
+
206
+ <!-- README_GPTQ.md-text-generation-webui end -->
207
+
208
+ <!-- README_GPTQ.md-use-from-tgi start -->
209
+ ## Serving this model from Text Generation Inference (TGI)
210
+
211
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
212
+
213
+ Example Docker parameters:
214
+
215
+ ```shell
216
+ --model-id TheBloke/vicuna-33B-coder-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
217
+ ```
218
+
219
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
220
+
221
+ ```shell
222
+ pip3 install huggingface-hub
223
+ ```
224
+
225
+ ```python
226
+ from huggingface_hub import InferenceClient
227
+
228
+ endpoint_url = "https://your-endpoint-url-here"
229
+
230
+ prompt = "Tell me about AI"
231
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
232
+ '''
233
+
234
+ client = InferenceClient(endpoint_url)
235
+ response = client.text_generation(prompt,
236
+ max_new_tokens=128,
237
+ do_sample=True,
238
+ temperature=0.7,
239
+ top_p=0.95,
240
+ top_k=40,
241
+ repetition_penalty=1.1)
242
+
243
+ print(f"Model output: {response}")
244
+ ```
245
+ <!-- README_GPTQ.md-use-from-tgi end -->
246
+ <!-- README_GPTQ.md-use-from-python start -->
247
+ ## How to use this GPTQ model from Python code
248
+
249
+ ### Install the necessary packages
250
+
251
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
252
+
253
+ ```shell
254
+ pip3 install transformers optimum
255
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
256
+ ```
257
+
258
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
259
+
260
+ ```shell
261
+ pip3 uninstall -y auto-gptq
262
+ git clone https://github.com/PanQiWei/AutoGPTQ
263
+ cd AutoGPTQ
264
+ git checkout v0.4.2
265
+ pip3 install .
266
+ ```
267
+
268
+ ### You can then use the following code
269
+
270
+ ```python
271
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
272
+
273
+ model_name_or_path = "TheBloke/vicuna-33B-coder-GPTQ"
274
+ # To use a different branch, change revision
275
+ # For example: revision="gptq-4bit-128g-actorder_True"
276
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
277
+ device_map="auto",
278
+ trust_remote_code=False,
279
+ revision="main")
280
+
281
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
282
+
283
+ prompt = "Tell me about AI"
284
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
285
+ '''
286
+
287
+ print("\n\n*** Generate:")
288
+
289
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
290
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
291
+ print(tokenizer.decode(output[0]))
292
+
293
+ # Inference can also be done using transformers' pipeline
294
+
295
+ print("*** Pipeline:")
296
+ pipe = pipeline(
297
+ "text-generation",
298
+ model=model,
299
+ tokenizer=tokenizer,
300
+ max_new_tokens=512,
301
+ do_sample=True,
302
+ temperature=0.7,
303
+ top_p=0.95,
304
+ top_k=40,
305
+ repetition_penalty=1.1
306
+ )
307
+
308
+ print(pipe(prompt_template)[0]['generated_text'])
309
+ ```
310
+ <!-- README_GPTQ.md-use-from-python end -->
311
+
312
+ <!-- README_GPTQ.md-compatibility start -->
313
+ ## Compatibility
314
+
315
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
316
+
317
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
318
+
319
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
320
+ <!-- README_GPTQ.md-compatibility end -->
321
+
322
+ <!-- footer start -->
323
+ <!-- 200823 -->
324
+ ## Discord
325
+
326
+ For further support, and discussions on these models and AI in general, join us at:
327
+
328
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
329
+
330
+ ## Thanks, and how to contribute
331
+
332
+ Thanks to the [chirper.ai](https://chirper.ai) team!
333
+
334
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
335
+
336
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
337
+
338
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
339
+
340
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
341
+
342
+ * Patreon: https://patreon.com/TheBlokeAI
343
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
344
+
345
+ **Special thanks to**: Aemon Algiz.
346
+
347
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
348
+
349
+
350
+ Thank you to all my generous patrons and donaters!
351
+
352
+ And thank you again to a16z for their generous grant.
353
+
354
+ <!-- footer end -->
355
+
356
+ # Original model card: Chao Chang-Yu's Vicuna 33B Coder
357
+
358
+ ---
359
+ # Model Card for Model ID
360
+
361
+ <!-- Provide a quick summary of what the model is/does. -->
362
+
363
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
364
+
365
+ ## Model Details
366
+
367
+ ### Model Description
368
+
369
+ <!-- Provide a longer summary of what this model is. -->
370
+
371
+
372
+
373
+ - **Developed by:** [More Information Needed]
374
+ - **Shared by [optional]:** [More Information Needed]
375
+ - **Model type:** [More Information Needed]
376
+ - **Language(s) (NLP):** [More Information Needed]
377
+ - **License:** [More Information Needed]
378
+ - **Finetuned from model [optional]:** [More Information Needed]
379
+
380
+ ### Model Sources [optional]
381
+
382
+ <!-- Provide the basic links for the model. -->
383
+
384
+ - **Repository:** [More Information Needed]
385
+ - **Paper [optional]:** [More Information Needed]
386
+ - **Demo [optional]:** [More Information Needed]
387
+
388
+ ## Uses
389
+
390
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
391
+
392
+ ### Direct Use
393
+
394
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
395
+
396
+ [More Information Needed]
397
+
398
+ ### Downstream Use [optional]
399
+
400
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
401
+
402
+ [More Information Needed]
403
+
404
+ ### Out-of-Scope Use
405
+
406
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
407
+
408
+ [More Information Needed]
409
+
410
+ ## Bias, Risks, and Limitations
411
+
412
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
413
+
414
+ [More Information Needed]
415
+
416
+ ### Recommendations
417
+
418
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
419
+
420
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
421
+
422
+ ## How to Get Started with the Model
423
+
424
+ Use the code below to get started with the model.
425
+
426
+ [More Information Needed]
427
+
428
+ ## Training Details
429
+
430
+ ### Training Data
431
+
432
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
433
+
434
+ [More Information Needed]
435
+
436
+ ### Training Procedure
437
+
438
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
439
+
440
+ #### Preprocessing [optional]
441
+
442
+ [More Information Needed]
443
+
444
+
445
+ #### Training Hyperparameters
446
+
447
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
448
+
449
+ #### Speeds, Sizes, Times [optional]
450
+
451
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
452
+
453
+ [More Information Needed]
454
+
455
+ ## Evaluation
456
+
457
+ <!-- This section describes the evaluation protocols and provides the results. -->
458
+
459
+ ### Testing Data, Factors & Metrics
460
+
461
+ #### Testing Data
462
+
463
+ <!-- This should link to a Data Card if possible. -->
464
+
465
+ [More Information Needed]
466
+
467
+ #### Factors
468
+
469
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
470
+
471
+ [More Information Needed]
472
+
473
+ #### Metrics
474
+
475
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
476
+
477
+ [More Information Needed]
478
+
479
+ ### Results
480
+
481
+ [More Information Needed]
482
+
483
+ #### Summary
484
+
485
+
486
+
487
+ ## Model Examination [optional]
488
+
489
+ <!-- Relevant interpretability work for the model goes here -->
490
+
491
+ [More Information Needed]
492
+
493
+ ## Environmental Impact
494
+
495
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
496
+
497
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
498
+
499
+ - **Hardware Type:** [More Information Needed]
500
+ - **Hours used:** [More Information Needed]
501
+ - **Cloud Provider:** [More Information Needed]
502
+ - **Compute Region:** [More Information Needed]
503
+ - **Carbon Emitted:** [More Information Needed]
504
+
505
+ ## Technical Specifications [optional]
506
+
507
+ ### Model Architecture and Objective
508
+
509
+ [More Information Needed]
510
+
511
+ ### Compute Infrastructure
512
+
513
+ [More Information Needed]
514
+
515
+ #### Hardware
516
+
517
+ [More Information Needed]
518
+
519
+ #### Software
520
+
521
+ [More Information Needed]
522
+
523
+ ## Citation [optional]
524
+
525
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
526
+
527
+ **BibTeX:**
528
+
529
+ [More Information Needed]
530
+
531
+ **APA:**
532
+
533
+ [More Information Needed]
534
+
535
+ ## Glossary [optional]
536
+
537
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
538
+
539
+ [More Information Needed]
540
+
541
+ ## More Information [optional]
542
+
543
+ [More Information Needed]
544
+
545
+ ## Model Card Authors [optional]
546
+
547
+ [More Information Needed]
548
+
549
+ ## Model Card Contact
550
+
551
+ [More Information Needed]