TheBloke commited on
Commit
ec9c156
·
1 Parent(s): 08e453f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +532 -0
README.md ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: FelixChao/vicuna-33b-coder
3
+ inference: false
4
+ license: other
5
+ model-index:
6
+ - name: Vicuna-Coder
7
+ results:
8
+ - dataset:
9
+ name: MultiPL-HumanEval (Python)
10
+ type: nuprl/MultiPL-E
11
+ metrics:
12
+ - name: pass@1
13
+ type: pass@1
14
+ value: 0.274
15
+ verified: false
16
+ task:
17
+ type: text-generation
18
+ model_creator: Chao Chang-Yu
19
+ model_name: Vicuna 33B Coder
20
+ model_type: llama
21
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
22
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
23
+ USER: {prompt} ASSISTANT:
24
+
25
+ '
26
+ quantized_by: TheBloke
27
+ tags:
28
+ - code
29
+ ---
30
+ <!-- markdownlint-disable MD041 -->
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # Vicuna 33B Coder - AWQ
50
+ - Model creator: [Chao Chang-Yu](https://huggingface.co/FelixChao)
51
+ - Original model: [Vicuna 33B Coder](https://huggingface.co/FelixChao/vicuna-33b-coder)
52
+
53
+ <!-- description start -->
54
+ ## Description
55
+
56
+ This repo contains AWQ model files for [Chao Chang-Yu's Vicuna 33B Coder](https://huggingface.co/FelixChao/vicuna-33b-coder).
57
+
58
+
59
+ ### About AWQ
60
+
61
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
62
+
63
+ It is supported by:
64
+
65
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
66
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
67
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
68
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
69
+
70
+ <!-- description end -->
71
+ <!-- repositories-available start -->
72
+ ## Repositories available
73
+
74
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/vicuna-33B-coder-AWQ)
75
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vicuna-33B-coder-GPTQ)
76
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-33B-coder-GGUF)
77
+ * [Chao Chang-Yu's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/FelixChao/vicuna-33b-coder)
78
+ <!-- repositories-available end -->
79
+
80
+ <!-- prompt-template start -->
81
+ ## Prompt template: Vicuna
82
+
83
+ ```
84
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
85
+
86
+ ```
87
+
88
+ <!-- prompt-template end -->
89
+
90
+
91
+ <!-- README_AWQ.md-provided-files start -->
92
+ ## Provided files, and AWQ parameters
93
+
94
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
95
+
96
+ Models are released as sharded safetensors files.
97
+
98
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
99
+ | ------ | ---- | -- | ----------- | ------- | ---- |
100
+ | [main](https://huggingface.co/TheBloke/vicuna-33B-coder-AWQ/tree/main) | 4 | 128 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 2048 | 17.53 GB
101
+
102
+ <!-- README_AWQ.md-provided-files end -->
103
+
104
+ <!-- README_AWQ.md-text-generation-webui start -->
105
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
106
+
107
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
108
+
109
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
110
+
111
+ 1. Click the **Model tab**.
112
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/vicuna-33B-coder-AWQ`.
113
+ 3. Click **Download**.
114
+ 4. The model will start downloading. Once it's finished it will say "Done".
115
+ 5. In the top left, click the refresh icon next to **Model**.
116
+ 6. In the **Model** dropdown, choose the model you just downloaded: `vicuna-33B-coder-AWQ`
117
+ 7. Select **Loader: AutoAWQ**.
118
+ 8. Click Load, and the model will load and is now ready for use.
119
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
120
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
121
+ <!-- README_AWQ.md-text-generation-webui end -->
122
+
123
+ <!-- README_AWQ.md-use-from-vllm start -->
124
+ ## Multi-user inference server: vLLM
125
+
126
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
127
+
128
+ - Please ensure you are using vLLM version 0.2 or later.
129
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
130
+
131
+ For example:
132
+
133
+ ```shell
134
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/vicuna-33B-coder-AWQ --quantization awq
135
+ ```
136
+
137
+ - When using vLLM from Python code, again set `quantization=awq`.
138
+
139
+ For example:
140
+
141
+ ```python
142
+ from vllm import LLM, SamplingParams
143
+
144
+ prompts = [
145
+ "Tell me about AI",
146
+ "Write a story about llamas",
147
+ "What is 291 - 150?",
148
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
149
+ ]
150
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
151
+ '''
152
+
153
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
154
+
155
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
156
+
157
+ llm = LLM(model="TheBloke/vicuna-33B-coder-AWQ", quantization="awq", dtype="auto")
158
+
159
+ outputs = llm.generate(prompts, sampling_params)
160
+
161
+ # Print the outputs.
162
+ for output in outputs:
163
+ prompt = output.prompt
164
+ generated_text = output.outputs[0].text
165
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
166
+ ```
167
+ <!-- README_AWQ.md-use-from-vllm start -->
168
+
169
+ <!-- README_AWQ.md-use-from-tgi start -->
170
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
171
+
172
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
173
+
174
+ Example Docker parameters:
175
+
176
+ ```shell
177
+ --model-id TheBloke/vicuna-33B-coder-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
178
+ ```
179
+
180
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
181
+
182
+ ```shell
183
+ pip3 install huggingface-hub
184
+ ```
185
+
186
+ ```python
187
+ from huggingface_hub import InferenceClient
188
+
189
+ endpoint_url = "https://your-endpoint-url-here"
190
+
191
+ prompt = "Tell me about AI"
192
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
193
+ '''
194
+
195
+ client = InferenceClient(endpoint_url)
196
+ response = client.text_generation(prompt,
197
+ max_new_tokens=128,
198
+ do_sample=True,
199
+ temperature=0.7,
200
+ top_p=0.95,
201
+ top_k=40,
202
+ repetition_penalty=1.1)
203
+
204
+ print(f"Model output: ", response)
205
+ ```
206
+ <!-- README_AWQ.md-use-from-tgi end -->
207
+
208
+ <!-- README_AWQ.md-use-from-python start -->
209
+ ## Inference from Python code using AutoAWQ
210
+
211
+ ### Install the AutoAWQ package
212
+
213
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.
214
+
215
+ ```shell
216
+ pip3 install autoawq
217
+ ```
218
+
219
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
220
+
221
+ ```shell
222
+ pip3 uninstall -y autoawq
223
+ git clone https://github.com/casper-hansen/AutoAWQ
224
+ cd AutoAWQ
225
+ pip3 install .
226
+ ```
227
+
228
+ ### AutoAWQ example code
229
+
230
+ ```python
231
+ from awq import AutoAWQForCausalLM
232
+ from transformers import AutoTokenizer
233
+
234
+ model_name_or_path = "TheBloke/vicuna-33B-coder-AWQ"
235
+
236
+ # Load tokenizer
237
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
238
+ # Load model
239
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
240
+ trust_remote_code=False, safetensors=True)
241
+
242
+ prompt = "Tell me about AI"
243
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
244
+ '''
245
+
246
+ print("*** Running model.generate:")
247
+
248
+ token_input = tokenizer(
249
+ prompt_template,
250
+ return_tensors='pt'
251
+ ).input_ids.cuda()
252
+
253
+ # Generate output
254
+ generation_output = model.generate(
255
+ token_input,
256
+ do_sample=True,
257
+ temperature=0.7,
258
+ top_p=0.95,
259
+ top_k=40,
260
+ max_new_tokens=512
261
+ )
262
+
263
+ # Get the tokens from the output, decode them, print them
264
+ token_output = generation_output[0]
265
+ text_output = tokenizer.decode(token_output)
266
+ print("LLM output: ", text_output)
267
+
268
+ """
269
+ # Inference should be possible with transformers pipeline as well in future
270
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
271
+ from transformers import pipeline
272
+
273
+ print("*** Pipeline:")
274
+ pipe = pipeline(
275
+ "text-generation",
276
+ model=model,
277
+ tokenizer=tokenizer,
278
+ max_new_tokens=512,
279
+ do_sample=True,
280
+ temperature=0.7,
281
+ top_p=0.95,
282
+ top_k=40,
283
+ repetition_penalty=1.1
284
+ )
285
+
286
+ print(pipe(prompt_template)[0]['generated_text'])
287
+ """
288
+ ```
289
+ <!-- README_AWQ.md-use-from-python end -->
290
+
291
+ <!-- README_AWQ.md-compatibility start -->
292
+ ## Compatibility
293
+
294
+ The files provided are tested to work with:
295
+
296
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
297
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
298
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
299
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
300
+
301
+ <!-- README_AWQ.md-compatibility end -->
302
+
303
+ <!-- footer start -->
304
+ <!-- 200823 -->
305
+ ## Discord
306
+
307
+ For further support, and discussions on these models and AI in general, join us at:
308
+
309
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
310
+
311
+ ## Thanks, and how to contribute
312
+
313
+ Thanks to the [chirper.ai](https://chirper.ai) team!
314
+
315
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
316
+
317
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
318
+
319
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
320
+
321
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
322
+
323
+ * Patreon: https://patreon.com/TheBlokeAI
324
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
325
+
326
+ **Special thanks to**: Aemon Algiz.
327
+
328
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
329
+
330
+
331
+ Thank you to all my generous patrons and donaters!
332
+
333
+ And thank you again to a16z for their generous grant.
334
+
335
+ <!-- footer end -->
336
+
337
+ # Original model card: Chao Chang-Yu's Vicuna 33B Coder
338
+
339
+ ---
340
+ # Model Card for Model ID
341
+
342
+ <!-- Provide a quick summary of what the model is/does. -->
343
+
344
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
345
+
346
+ ## Model Details
347
+
348
+ ### Model Description
349
+
350
+ <!-- Provide a longer summary of what this model is. -->
351
+
352
+
353
+
354
+ - **Developed by:** [More Information Needed]
355
+ - **Shared by [optional]:** [More Information Needed]
356
+ - **Model type:** [More Information Needed]
357
+ - **Language(s) (NLP):** [More Information Needed]
358
+ - **License:** [More Information Needed]
359
+ - **Finetuned from model [optional]:** [More Information Needed]
360
+
361
+ ### Model Sources [optional]
362
+
363
+ <!-- Provide the basic links for the model. -->
364
+
365
+ - **Repository:** [More Information Needed]
366
+ - **Paper [optional]:** [More Information Needed]
367
+ - **Demo [optional]:** [More Information Needed]
368
+
369
+ ## Uses
370
+
371
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
372
+
373
+ ### Direct Use
374
+
375
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
376
+
377
+ [More Information Needed]
378
+
379
+ ### Downstream Use [optional]
380
+
381
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
382
+
383
+ [More Information Needed]
384
+
385
+ ### Out-of-Scope Use
386
+
387
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
388
+
389
+ [More Information Needed]
390
+
391
+ ## Bias, Risks, and Limitations
392
+
393
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
394
+
395
+ [More Information Needed]
396
+
397
+ ### Recommendations
398
+
399
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
400
+
401
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
402
+
403
+ ## How to Get Started with the Model
404
+
405
+ Use the code below to get started with the model.
406
+
407
+ [More Information Needed]
408
+
409
+ ## Training Details
410
+
411
+ ### Training Data
412
+
413
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
414
+
415
+ [More Information Needed]
416
+
417
+ ### Training Procedure
418
+
419
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
420
+
421
+ #### Preprocessing [optional]
422
+
423
+ [More Information Needed]
424
+
425
+
426
+ #### Training Hyperparameters
427
+
428
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
429
+
430
+ #### Speeds, Sizes, Times [optional]
431
+
432
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
433
+
434
+ [More Information Needed]
435
+
436
+ ## Evaluation
437
+
438
+ <!-- This section describes the evaluation protocols and provides the results. -->
439
+
440
+ ### Testing Data, Factors & Metrics
441
+
442
+ #### Testing Data
443
+
444
+ <!-- This should link to a Data Card if possible. -->
445
+
446
+ [More Information Needed]
447
+
448
+ #### Factors
449
+
450
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
451
+
452
+ [More Information Needed]
453
+
454
+ #### Metrics
455
+
456
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
457
+
458
+ [More Information Needed]
459
+
460
+ ### Results
461
+
462
+ [More Information Needed]
463
+
464
+ #### Summary
465
+
466
+
467
+
468
+ ## Model Examination [optional]
469
+
470
+ <!-- Relevant interpretability work for the model goes here -->
471
+
472
+ [More Information Needed]
473
+
474
+ ## Environmental Impact
475
+
476
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
477
+
478
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
479
+
480
+ - **Hardware Type:** [More Information Needed]
481
+ - **Hours used:** [More Information Needed]
482
+ - **Cloud Provider:** [More Information Needed]
483
+ - **Compute Region:** [More Information Needed]
484
+ - **Carbon Emitted:** [More Information Needed]
485
+
486
+ ## Technical Specifications [optional]
487
+
488
+ ### Model Architecture and Objective
489
+
490
+ [More Information Needed]
491
+
492
+ ### Compute Infrastructure
493
+
494
+ [More Information Needed]
495
+
496
+ #### Hardware
497
+
498
+ [More Information Needed]
499
+
500
+ #### Software
501
+
502
+ [More Information Needed]
503
+
504
+ ## Citation [optional]
505
+
506
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
507
+
508
+ **BibTeX:**
509
+
510
+ [More Information Needed]
511
+
512
+ **APA:**
513
+
514
+ [More Information Needed]
515
+
516
+ ## Glossary [optional]
517
+
518
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
519
+
520
+ [More Information Needed]
521
+
522
+ ## More Information [optional]
523
+
524
+ [More Information Needed]
525
+
526
+ ## Model Card Authors [optional]
527
+
528
+ [More Information Needed]
529
+
530
+ ## Model Card Contact
531
+
532
+ [More Information Needed]