Text Generation
Transformers
Safetensors
English
llama
text-generation-inference
4-bit precision
gptq
TheBloke commited on
Commit
5ed5ea5
1 Parent(s): cebc2f1

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +61 -36
README.md CHANGED
@@ -1,12 +1,13 @@
1
  ---
2
- inference: false
3
- license: other
4
  datasets:
5
  - databricks/databricks-dolly-15k
6
  - OpenAssistant/oasst1
7
  - sahil2801/CodeAlpaca-20k
 
8
  language:
9
  - en
 
 
10
  ---
11
 
12
  <!-- header start -->
@@ -15,7 +16,7 @@ language:
15
  </div>
16
  <div style="display: flex; justify-content: space-between; width: 100%;">
17
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
18
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
19
  </div>
20
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
21
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -25,41 +26,60 @@ language:
25
 
26
  # Allen AI's Tulu 7B GPTQ
27
 
28
- These files are GPTQ 4bit model files for [Allen AI's Tulu 7B](https://huggingface.co/allenai/tulu-7b).
29
 
30
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
 
 
31
 
32
  ## Repositories available
33
 
34
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/tulu-7B-GPTQ)
35
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/tulu-7B-GGML)
36
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/tulu-7B-fp16)
37
 
38
- ## Prompt template
39
-
40
- The following template should be used:
41
 
42
  ```
43
  <|user|>
44
  prompt goes here
45
  <|assistant|>
46
-
47
  ```
48
 
49
- **Note**: There should be a newline after `<|assistant|>`. This appears to be very important for getting this model to respond correctly.
 
 
 
 
50
 
51
- In other words, the prompt is:
 
 
 
 
 
 
 
52
 
 
 
 
 
53
  ```
54
- <|user|>\nprompt goes here\n<|assistant|>\n
55
  ```
 
 
 
56
 
57
- ## How to easily download and use this model in text-generation-webui
58
 
59
- Please make sure you're using the latest version of text-generation-webui
60
 
61
  1. Click the **Model tab**.
62
  2. Under **Download custom model or LoRA**, enter `TheBloke/tulu-7B-GPTQ`.
 
 
63
  3. Click **Download**.
64
  4. The model will start downloading. Once it's finished it will say "Done"
65
  5. In the top left, click the refresh icon next to **Model**.
@@ -73,14 +93,13 @@ Please make sure you're using the latest version of text-generation-webui
73
 
74
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
75
 
76
- `pip install auto-gptq`
77
 
78
  Then try the following example code:
79
 
80
  ```python
81
  from transformers import AutoTokenizer, pipeline, logging
82
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
83
- import argparse
84
 
85
  model_name_or_path = "TheBloke/tulu-7B-GPTQ"
86
  model_basename = "gptq_model-4bit-128g"
@@ -90,16 +109,30 @@ use_triton = False
90
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
91
 
92
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
93
- model_basename=model_basename,
94
  use_safetensors=True,
95
- trust_remote_code=False,
96
  device="cuda:0",
97
  use_triton=use_triton,
98
  quantize_config=None)
99
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  prompt = "Tell me about AI"
101
- prompt_template=f'''### Human: {prompt}
102
- ### Assistant:'''
 
 
103
 
104
  print("\n\n*** Generate:")
105
 
@@ -126,26 +159,18 @@ pipe = pipeline(
126
  print(pipe(prompt_template)[0]['generated_text'])
127
  ```
128
 
129
- ## Provided files
130
-
131
- **gptq_model-4bit-128g.safetensors**
132
-
133
- This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
134
 
135
- It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
136
 
137
- * `gptq_model-4bit-128g.safetensors`
138
- * Works with AutoGPTQ in CUDA or Triton modes.
139
- * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
140
- * Works with text-generation-webui, including one-click-installers.
141
- * Parameters: Groupsize = 128. Act Order / desc_act = False.
142
 
143
  <!-- footer start -->
144
  ## Discord
145
 
146
  For further support, and discussions on these models and AI in general, join us at:
147
 
148
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
149
 
150
  ## Thanks, and how to contribute.
151
 
@@ -160,9 +185,9 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
160
  * Patreon: https://patreon.com/TheBlokeAI
161
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
162
 
163
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
164
 
165
- **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
166
 
167
  Thank you to all my generous patrons and donaters!
168
 
@@ -205,7 +230,7 @@ Your message here!
205
  <|assistant|>
206
  ```
207
 
208
- For best results, format all inputs in this manner.
209
 
210
  ## Performance
211
 
 
1
  ---
 
 
2
  datasets:
3
  - databricks/databricks-dolly-15k
4
  - OpenAssistant/oasst1
5
  - sahil2801/CodeAlpaca-20k
6
+ inference: false
7
  language:
8
  - en
9
+ license: other
10
+ model_type: llama
11
  ---
12
 
13
  <!-- header start -->
 
16
  </div>
17
  <div style="display: flex; justify-content: space-between; width: 100%;">
18
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
19
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
20
  </div>
21
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
22
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
26
 
27
  # Allen AI's Tulu 7B GPTQ
28
 
29
+ These files are GPTQ model files for [Allen AI's Tulu 7B](https://huggingface.co/allenai/tulu-7b).
30
 
31
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
32
+
33
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
34
 
35
  ## Repositories available
36
 
37
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/tulu-7B-GPTQ)
38
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/tulu-7B-GGML)
39
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/tulu-7B-fp16)
40
 
41
+ ## Prompt template: Tulu
 
 
42
 
43
  ```
44
  <|user|>
45
  prompt goes here
46
  <|assistant|>
 
47
  ```
48
 
49
+ ## Provided files
50
+
51
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
52
+
53
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
54
 
55
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
56
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
57
+ | main | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
58
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
59
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
60
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
61
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
62
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
63
 
64
+ ## How to download from branches
65
+
66
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/tulu-7B-GPTQ:gptq-4bit-32g-actorder_True`
67
+ - With Git, you can clone a branch with:
68
  ```
69
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/tulu-7B-GPTQ`
70
  ```
71
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
72
+
73
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
74
 
75
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
76
 
77
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
78
 
79
  1. Click the **Model tab**.
80
  2. Under **Download custom model or LoRA**, enter `TheBloke/tulu-7B-GPTQ`.
81
+ - To download from a specific branch, enter for example `TheBloke/tulu-7B-GPTQ:gptq-4bit-32g-actorder_True`
82
+ - see Provided Files above for the list of branches for each option.
83
  3. Click **Download**.
84
  4. The model will start downloading. Once it's finished it will say "Done"
85
  5. In the top left, click the refresh icon next to **Model**.
 
93
 
94
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
95
 
96
+ `GITHUB_ACTIONS=true pip install auto-gptq`
97
 
98
  Then try the following example code:
99
 
100
  ```python
101
  from transformers import AutoTokenizer, pipeline, logging
102
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
 
103
 
104
  model_name_or_path = "TheBloke/tulu-7B-GPTQ"
105
  model_basename = "gptq_model-4bit-128g"
 
109
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
110
 
111
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
112
+ model_basename=model_basename
113
  use_safetensors=True,
114
+ trust_remote_code=True,
115
  device="cuda:0",
116
  use_triton=use_triton,
117
  quantize_config=None)
118
 
119
+ """
120
+ To download from a specific branch, use the revision parameter, as in this example:
121
+
122
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
123
+ revision="gptq-4bit-32g-actorder_True",
124
+ model_basename=model_basename,
125
+ use_safetensors=True,
126
+ trust_remote_code=True,
127
+ device="cuda:0",
128
+ quantize_config=None)
129
+ """
130
+
131
  prompt = "Tell me about AI"
132
+ prompt_template=f'''<|user|>
133
+ prompt goes here
134
+ <|assistant|>
135
+ '''
136
 
137
  print("\n\n*** Generate:")
138
 
 
159
  print(pipe(prompt_template)[0]['generated_text'])
160
  ```
161
 
162
+ ## Compatibility
 
 
 
 
163
 
164
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
165
 
166
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
 
167
 
168
  <!-- footer start -->
169
  ## Discord
170
 
171
  For further support, and discussions on these models and AI in general, join us at:
172
 
173
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
174
 
175
  ## Thanks, and how to contribute.
176
 
 
185
  * Patreon: https://patreon.com/TheBlokeAI
186
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
187
 
188
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
189
 
190
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
191
 
192
  Thank you to all my generous patrons and donaters!
193
 
 
230
  <|assistant|>
231
  ```
232
 
233
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
234
 
235
  ## Performance
236