Text Generation
Transformers
Safetensors
English
llama
text-generation-inference
4-bit precision
gptq
TheBloke commited on
Commit
de480ea
1 Parent(s): 1247226

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +501 -0
README.md ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/tulu-2-dpo-13b
3
+ datasets:
4
+ - HuggingFaceH4/ultrafeedback_binarized
5
+ - allenai/tulu-v2-sft-mixture
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: other
10
+ model-index:
11
+ - name: tulu-2-dpo-13b
12
+ results: []
13
+ model_creator: Allen Institute for AI
14
+ model_name: Tulu 2 DPO 13B
15
+ model_type: llama
16
+ prompt_template: '<|user|>
17
+
18
+ {prompt}
19
+
20
+ <|assistant|>
21
+
22
+ '
23
+ quantized_by: TheBloke
24
+ ---
25
+ <!-- markdownlint-disable MD041 -->
26
+
27
+ <!-- header start -->
28
+ <!-- 200823 -->
29
+ <div style="width: auto; margin-left: auto; margin-right: auto">
30
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
31
+ </div>
32
+ <div style="display: flex; justify-content: space-between; width: 100%;">
33
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
34
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
35
+ </div>
36
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
37
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
38
+ </div>
39
+ </div>
40
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
41
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
42
+ <!-- header end -->
43
+
44
+ # Tulu 2 DPO 13B - GPTQ
45
+ - Model creator: [Allen Institute for AI](https://huggingface.co/allenai)
46
+ - Original model: [Tulu 2 DPO 13B](https://huggingface.co/allenai/tulu-2-dpo-13b)
47
+
48
+ <!-- description start -->
49
+ # Description
50
+
51
+ This repo contains GPTQ model files for [Allen Institute for AI's Tulu 2 DPO 13B](https://huggingface.co/allenai/tulu-2-dpo-13b).
52
+
53
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
54
+
55
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
56
+
57
+ <!-- description end -->
58
+ <!-- repositories-available start -->
59
+ ## Repositories available
60
+
61
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/tulu-2-dpo-13B-AWQ)
62
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ)
63
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GGUF)
64
+ * [Allen Institute for AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/allenai/tulu-2-dpo-13b)
65
+ <!-- repositories-available end -->
66
+
67
+ <!-- prompt-template start -->
68
+ ## Prompt template: Tulu
69
+
70
+ ```
71
+ <|user|>
72
+ {prompt}
73
+ <|assistant|>
74
+
75
+ ```
76
+
77
+ <!-- prompt-template end -->
78
+
79
+
80
+
81
+ <!-- README_GPTQ.md-compatible clients start -->
82
+ ## Known compatible clients / servers
83
+
84
+ These GPTQ models are known to work in the following inference servers/webuis.
85
+
86
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
87
+ - [KoboldAI United](https://github.com/henk717/koboldai)
88
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
89
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
90
+
91
+ This may not be a complete list; if you know of others, please let me know!
92
+ <!-- README_GPTQ.md-compatible clients end -->
93
+
94
+ <!-- README_GPTQ.md-provided-files start -->
95
+ ## Provided files, and GPTQ parameters
96
+
97
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
98
+
99
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
100
+
101
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
102
+
103
+ <details>
104
+ <summary>Explanation of GPTQ parameters</summary>
105
+
106
+ - Bits: The bit size of the quantised model.
107
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
108
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
109
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
110
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
111
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
112
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
113
+
114
+ </details>
115
+
116
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
117
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
118
+ | [main](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
119
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
120
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
121
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
122
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 14.54 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
123
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
124
+
125
+ <!-- README_GPTQ.md-provided-files end -->
126
+
127
+ <!-- README_GPTQ.md-download-from-branches start -->
128
+ ## How to download, including from branches
129
+
130
+ ### In text-generation-webui
131
+
132
+ To download from the `main` branch, enter `TheBloke/tulu-2-dpo-13B-GPTQ` in the "Download model" box.
133
+
134
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/tulu-2-dpo-13B-GPTQ:gptq-4bit-32g-actorder_True`
135
+
136
+ ### From the command line
137
+
138
+ I recommend using the `huggingface-hub` Python library:
139
+
140
+ ```shell
141
+ pip3 install huggingface-hub
142
+ ```
143
+
144
+ To download the `main` branch to a folder called `tulu-2-dpo-13B-GPTQ`:
145
+
146
+ ```shell
147
+ mkdir tulu-2-dpo-13B-GPTQ
148
+ huggingface-cli download TheBloke/tulu-2-dpo-13B-GPTQ --local-dir tulu-2-dpo-13B-GPTQ --local-dir-use-symlinks False
149
+ ```
150
+
151
+ To download from a different branch, add the `--revision` parameter:
152
+
153
+ ```shell
154
+ mkdir tulu-2-dpo-13B-GPTQ
155
+ huggingface-cli download TheBloke/tulu-2-dpo-13B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir tulu-2-dpo-13B-GPTQ --local-dir-use-symlinks False
156
+ ```
157
+
158
+ <details>
159
+ <summary>More advanced huggingface-cli download usage</summary>
160
+
161
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
162
+
163
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
164
+
165
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
166
+
167
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
168
+
169
+ ```shell
170
+ pip3 install hf_transfer
171
+ ```
172
+
173
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
174
+
175
+ ```shell
176
+ mkdir tulu-2-dpo-13B-GPTQ
177
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/tulu-2-dpo-13B-GPTQ --local-dir tulu-2-dpo-13B-GPTQ --local-dir-use-symlinks False
178
+ ```
179
+
180
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
181
+ </details>
182
+
183
+ ### With `git` (**not** recommended)
184
+
185
+ To clone a specific branch with `git`, use a command like this:
186
+
187
+ ```shell
188
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/tulu-2-dpo-13B-GPTQ
189
+ ```
190
+
191
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
192
+
193
+ <!-- README_GPTQ.md-download-from-branches end -->
194
+ <!-- README_GPTQ.md-text-generation-webui start -->
195
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
196
+
197
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
198
+
199
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
200
+
201
+ 1. Click the **Model tab**.
202
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/tulu-2-dpo-13B-GPTQ`.
203
+
204
+ - To download from a specific branch, enter for example `TheBloke/tulu-2-dpo-13B-GPTQ:gptq-4bit-32g-actorder_True`
205
+ - see Provided Files above for the list of branches for each option.
206
+
207
+ 3. Click **Download**.
208
+ 4. The model will start downloading. Once it's finished it will say "Done".
209
+ 5. In the top left, click the refresh icon next to **Model**.
210
+ 6. In the **Model** dropdown, choose the model you just downloaded: `tulu-2-dpo-13B-GPTQ`
211
+ 7. The model will automatically load, and is now ready for use!
212
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
213
+
214
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
215
+
216
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
217
+
218
+ <!-- README_GPTQ.md-text-generation-webui end -->
219
+
220
+ <!-- README_GPTQ.md-use-from-tgi start -->
221
+ ## Serving this model from Text Generation Inference (TGI)
222
+
223
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
224
+
225
+ Example Docker parameters:
226
+
227
+ ```shell
228
+ --model-id TheBloke/tulu-2-dpo-13B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
229
+ ```
230
+
231
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
232
+
233
+ ```shell
234
+ pip3 install huggingface-hub
235
+ ```
236
+
237
+ ```python
238
+ from huggingface_hub import InferenceClient
239
+
240
+ endpoint_url = "https://your-endpoint-url-here"
241
+
242
+ prompt = "Tell me about AI"
243
+ prompt_template=f'''<|user|>
244
+ {prompt}
245
+ <|assistant|>
246
+ '''
247
+
248
+ client = InferenceClient(endpoint_url)
249
+ response = client.text_generation(prompt,
250
+ max_new_tokens=128,
251
+ do_sample=True,
252
+ temperature=0.7,
253
+ top_p=0.95,
254
+ top_k=40,
255
+ repetition_penalty=1.1)
256
+
257
+ print(f"Model output: {response}")
258
+ ```
259
+ <!-- README_GPTQ.md-use-from-tgi end -->
260
+ <!-- README_GPTQ.md-use-from-python start -->
261
+ ## Python code example: inference from this GPTQ model
262
+
263
+ ### Install the necessary packages
264
+
265
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
266
+
267
+ ```shell
268
+ pip3 install --upgrade transformers optimum
269
+ # If using PyTorch 2.1 + CUDA 12.x:
270
+ pip3 install --upgrade auto-gptq
271
+ # or, if using PyTorch 2.1 + CUDA 11.x:
272
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
273
+ ```
274
+
275
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
276
+
277
+ ```shell
278
+ pip3 uninstall -y auto-gptq
279
+ git clone https://github.com/PanQiWei/AutoGPTQ
280
+ cd AutoGPTQ
281
+ git checkout v0.5.1
282
+ pip3 install .
283
+ ```
284
+
285
+ ### Example Python code
286
+
287
+ ```python
288
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
289
+
290
+ model_name_or_path = "TheBloke/tulu-2-dpo-13B-GPTQ"
291
+ # To use a different branch, change revision
292
+ # For example: revision="gptq-4bit-32g-actorder_True"
293
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
294
+ device_map="auto",
295
+ trust_remote_code=False,
296
+ revision="main")
297
+
298
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
299
+
300
+ prompt = "Tell me about AI"
301
+ prompt_template=f'''<|user|>
302
+ {prompt}
303
+ <|assistant|>
304
+ '''
305
+
306
+ print("\n\n*** Generate:")
307
+
308
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
309
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
310
+ print(tokenizer.decode(output[0]))
311
+
312
+ # Inference can also be done using transformers' pipeline
313
+
314
+ print("*** Pipeline:")
315
+ pipe = pipeline(
316
+ "text-generation",
317
+ model=model,
318
+ tokenizer=tokenizer,
319
+ max_new_tokens=512,
320
+ do_sample=True,
321
+ temperature=0.7,
322
+ top_p=0.95,
323
+ top_k=40,
324
+ repetition_penalty=1.1
325
+ )
326
+
327
+ print(pipe(prompt_template)[0]['generated_text'])
328
+ ```
329
+ <!-- README_GPTQ.md-use-from-python end -->
330
+
331
+ <!-- README_GPTQ.md-compatibility start -->
332
+ ## Compatibility
333
+
334
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
335
+
336
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
337
+
338
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
339
+ <!-- README_GPTQ.md-compatibility end -->
340
+
341
+ <!-- footer start -->
342
+ <!-- 200823 -->
343
+ ## Discord
344
+
345
+ For further support, and discussions on these models and AI in general, join us at:
346
+
347
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
348
+
349
+ ## Thanks, and how to contribute
350
+
351
+ Thanks to the [chirper.ai](https://chirper.ai) team!
352
+
353
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
354
+
355
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
356
+
357
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
358
+
359
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
360
+
361
+ * Patreon: https://patreon.com/TheBlokeAI
362
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
363
+
364
+ **Special thanks to**: Aemon Algiz.
365
+
366
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
367
+
368
+
369
+ Thank you to all my generous patrons and donaters!
370
+
371
+ And thank you again to a16z for their generous grant.
372
+
373
+ <!-- footer end -->
374
+
375
+ # Original model card: Allen Institute for AI's Tulu 2 DPO 13B
376
+
377
+
378
+
379
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-v2/Tulu%20V2%20banner.png" alt="TuluV2 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
380
+
381
+
382
+ # Model Card for Tulu V2 DPO 13B
383
+
384
+ Tulu is a series of language models that are trained to act as helpful assistants.
385
+ Tulu V2 DPO 13B is a fine-tuned version of Llama 2 that was trained on on a mix of publicly available, synthetic and human datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
386
+ This model is a strong alternative to Llama 2 13b Chat.
387
+
388
+ For more details, read the paper: [Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2
389
+ ](https://arxiv.org/abs/2311.10702).
390
+
391
+
392
+ ## Model description
393
+
394
+ - **Model type:** A model belonging to a suite of instruction and RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
395
+ - **Language(s) (NLP):** Primarily English
396
+ - **License:** [AI2 ImpACT](https://allenai.org/impact-license) Low-risk license.
397
+ - **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
398
+
399
+ ### Model Sources
400
+
401
+ - **Repository:** https://github.com/allenai/https://github.com/allenai/open-instruct
402
+ - **DPO Recipe:** The DPO recipe is from the [Zephyr Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) model
403
+ - **Model Family:** Other models and the dataset are found in the [Tulu V2 collection](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).
404
+
405
+ ## Performance
406
+
407
+ | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
408
+ |-------------|-----|----|---------------|--------------|
409
+ | **Tulu-v2-7b** 🐪 | **7B** | **SFT** | **6.30** | **73.9** |
410
+ | **Tulu-v2-dpo-7b** 🐪 | **7B** | **DPO** | **6.29** | **85.1** |
411
+ | **Tulu-v2-13b** 🐪 | **13B** | **SFT** | **6.70** | **78.9** |
412
+ | **Tulu-v2-dpo-13b** 🐪 | **13B** | **DPO** | **7.00** | **89.5** |
413
+ | **Tulu-v2-70b** 🐪 | **70B** | **SFT** | **7.49** | **86.6** |
414
+ | **Tulu-v2-dpo-70b** 🐪 | **70B** | **DPO** | **7.89** | **95.1** |
415
+
416
+ ## Input Format
417
+
418
+ The model is trained to use the following format (note the newlines):
419
+ ```
420
+ <|user|>
421
+ Your message here!
422
+ <|assistant|>
423
+ ```
424
+
425
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
426
+
427
+
428
+ ## Intended uses & limitations
429
+
430
+ The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
431
+ We then further aligned the model with a [Jax DPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_dpo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4.
432
+
433
+
434
+ <!-- You can find the datasets used for training Tulu V2 [here]()
435
+
436
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
437
+
438
+ ```python
439
+ # Install transformers from source - only needed for versions <= v4.34
440
+ # pip install git+https://github.com/huggingface/transformers.git
441
+ # pip install accelerate
442
+
443
+ import torch
444
+ from transformers import pipeline
445
+
446
+ pipe = pipeline("text-generation", model="HuggingFaceH4/tulu-2-dpo-70b", torch_dtype=torch.bfloat16, device_map="auto")
447
+
448
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
449
+ messages = [
450
+ {
451
+ "role": "system",
452
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
453
+ },
454
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
455
+ ]
456
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
457
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
458
+ print(outputs[0]["generated_text"])
459
+ # <|system|>
460
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
461
+ # <|user|>
462
+ # How many helicopters can a human eat in one sitting?</s>
463
+ # <|assistant|>
464
+ # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
465
+ ```-->
466
+
467
+ ## Bias, Risks, and Limitations
468
+
469
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
470
+
471
+ The Tulu models have not been aligned to generate safe completions within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
472
+ It is also unknown what the size and composition of the corpus was used to train the base Llama 2 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
473
+
474
+
475
+ ### Training hyperparameters
476
+
477
+ The following hyperparameters were used during DPO training:
478
+ - learning_rate: 5e-07
479
+ - total_train_batch_size: 32
480
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
481
+ - lr_scheduler_type: linear
482
+ - lr_scheduler_warmup_ratio: 0.1
483
+ - num_epochs: 3.0
484
+
485
+
486
+ ## Citation
487
+
488
+ If you find Tulu 2 is useful in your work, please cite it with:
489
+
490
+ ```
491
+ @misc{ivison2023camels,
492
+ title={Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2},
493
+ author={Hamish Ivison and Yizhong Wang and Valentina Pyatkin and Nathan Lambert and Matthew Peters and Pradeep Dasigi and Joel Jang and David Wadden and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
494
+ year={2023},
495
+ eprint={2311.10702},
496
+ archivePrefix={arXiv},
497
+ primaryClass={cs.CL}
498
+ }
499
+ ```
500
+
501
+ *Model card adapted from [Zephyr Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/README.md)*