TheBloke commited on
Commit
ce579bb
1 Parent(s): ea702f2

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +377 -0
README.md ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bhenrym14/platypus-yi-34b
3
+ datasets:
4
+ - garage-bAInd/Open-Platypus
5
+ inference: false
6
+ license: other
7
+ license_link: LICENSE
8
+ license_name: yi-license
9
+ model_creator: Brandon
10
+ model_name: Platypus Yi 34B
11
+ model_type: llama
12
+ prompt_template: "A chat.\nUSER: {prompt}\nASSISTANT: \n"
13
+ quantized_by: TheBloke
14
+ ---
15
+ <!-- markdownlint-disable MD041 -->
16
+
17
+ <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
+ </div>
22
+ <div style="display: flex; justify-content: space-between; width: 100%;">
23
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
+ </div>
26
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
+ </div>
29
+ </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
+ <!-- header end -->
33
+
34
+ # Platypus Yi 34B - AWQ
35
+ - Model creator: [Brandon](https://huggingface.co/bhenrym14)
36
+ - Original model: [Platypus Yi 34B](https://huggingface.co/bhenrym14/platypus-yi-34b)
37
+
38
+ <!-- description start -->
39
+ ## Description
40
+
41
+ This repo contains AWQ model files for [Brandon's Platypus Yi 34B](https://huggingface.co/bhenrym14/platypus-yi-34b).
42
+
43
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
44
+
45
+
46
+ ### About AWQ
47
+
48
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
49
+
50
+ It is supported by:
51
+
52
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
53
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
54
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
55
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
56
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
57
+
58
+ <!-- description end -->
59
+ <!-- repositories-available start -->
60
+ ## Repositories available
61
+
62
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/platypus-yi-34b-AWQ)
63
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/platypus-yi-34b-GPTQ)
64
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/platypus-yi-34b-GGUF)
65
+ * [Brandon's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bhenrym14/platypus-yi-34b)
66
+ <!-- repositories-available end -->
67
+
68
+ <!-- prompt-template start -->
69
+ ## Prompt template: Chat
70
+
71
+ ```
72
+ A chat.
73
+ USER: {prompt}
74
+ ASSISTANT:
75
+
76
+ ```
77
+
78
+ <!-- prompt-template end -->
79
+ <!-- licensing start -->
80
+ ## Licensing
81
+
82
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
83
+
84
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
85
+
86
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Brandon's Platypus Yi 34B](https://huggingface.co/bhenrym14/platypus-yi-34b).
87
+ <!-- licensing end -->
88
+ <!-- README_AWQ.md-provided-files start -->
89
+ ## Provided files, and AWQ parameters
90
+
91
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
92
+
93
+ Models are released as sharded safetensors files.
94
+
95
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
96
+ | ------ | ---- | -- | ----------- | ------- | ---- |
97
+ | [main](https://huggingface.co/TheBloke/platypus-yi-34b-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 19.23 GB
98
+
99
+ <!-- README_AWQ.md-provided-files end -->
100
+
101
+ <!-- README_AWQ.md-text-generation-webui start -->
102
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
103
+
104
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
105
+
106
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
107
+
108
+ 1. Click the **Model tab**.
109
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/platypus-yi-34b-AWQ`.
110
+ 3. Click **Download**.
111
+ 4. The model will start downloading. Once it's finished it will say "Done".
112
+ 5. In the top left, click the refresh icon next to **Model**.
113
+ 6. In the **Model** dropdown, choose the model you just downloaded: `platypus-yi-34b-AWQ`
114
+ 7. Select **Loader: AutoAWQ**.
115
+ 8. Click Load, and the model will load and is now ready for use.
116
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
117
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
118
+ <!-- README_AWQ.md-text-generation-webui end -->
119
+
120
+ <!-- README_AWQ.md-use-from-vllm start -->
121
+ ## Multi-user inference server: vLLM
122
+
123
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
124
+
125
+ - Please ensure you are using vLLM version 0.2 or later.
126
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
127
+
128
+ For example:
129
+
130
+ ```shell
131
+ python3 -m vllm.entrypoints.api_server --model TheBloke/platypus-yi-34b-AWQ --quantization awq --dtype auto
132
+ ```
133
+
134
+ - When using vLLM from Python code, again set `quantization=awq`.
135
+
136
+ For example:
137
+
138
+ ```python
139
+ from vllm import LLM, SamplingParams
140
+
141
+ prompts = [
142
+ "Tell me about AI",
143
+ "Write a story about llamas",
144
+ "What is 291 - 150?",
145
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
146
+ ]
147
+ prompt_template=f'''A chat.
148
+ USER: {prompt}
149
+ ASSISTANT:
150
+ '''
151
+
152
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
153
+
154
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
155
+
156
+ llm = LLM(model="TheBloke/platypus-yi-34b-AWQ", quantization="awq", dtype="auto")
157
+
158
+ outputs = llm.generate(prompts, sampling_params)
159
+
160
+ # Print the outputs.
161
+ for output in outputs:
162
+ prompt = output.prompt
163
+ generated_text = output.outputs[0].text
164
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
165
+ ```
166
+ <!-- README_AWQ.md-use-from-vllm start -->
167
+
168
+ <!-- README_AWQ.md-use-from-tgi start -->
169
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
170
+
171
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
172
+
173
+ Example Docker parameters:
174
+
175
+ ```shell
176
+ --model-id TheBloke/platypus-yi-34b-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
177
+ ```
178
+
179
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
180
+
181
+ ```shell
182
+ pip3 install huggingface-hub
183
+ ```
184
+
185
+ ```python
186
+ from huggingface_hub import InferenceClient
187
+
188
+ endpoint_url = "https://your-endpoint-url-here"
189
+
190
+ prompt = "Tell me about AI"
191
+ prompt_template=f'''A chat.
192
+ USER: {prompt}
193
+ ASSISTANT:
194
+ '''
195
+
196
+ client = InferenceClient(endpoint_url)
197
+ response = client.text_generation(prompt,
198
+ max_new_tokens=128,
199
+ do_sample=True,
200
+ temperature=0.7,
201
+ top_p=0.95,
202
+ top_k=40,
203
+ repetition_penalty=1.1)
204
+
205
+ print(f"Model output: ", response)
206
+ ```
207
+ <!-- README_AWQ.md-use-from-tgi end -->
208
+
209
+ <!-- README_AWQ.md-use-from-python start -->
210
+ ## Inference from Python code using Transformers
211
+
212
+ ### Install the necessary packages
213
+
214
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
215
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
216
+
217
+ ```shell
218
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
219
+ ```
220
+
221
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
222
+
223
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
224
+
225
+ ```shell
226
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
227
+ ```
228
+
229
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
230
+
231
+ ```shell
232
+ pip3 uninstall -y autoawq
233
+ git clone https://github.com/casper-hansen/AutoAWQ
234
+ cd AutoAWQ
235
+ pip3 install .
236
+ ```
237
+
238
+ ### Transformers example code (requires Transformers 4.35.0 and later)
239
+
240
+ ```python
241
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
242
+
243
+ model_name_or_path = "TheBloke/platypus-yi-34b-AWQ"
244
+
245
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
246
+ model = AutoModelForCausalLM.from_pretrained(
247
+ model_name_or_path,
248
+ low_cpu_mem_usage=True,
249
+ device_map="cuda:0"
250
+ )
251
+
252
+ # Using the text streamer to stream output one token at a time
253
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
254
+
255
+ prompt = "Tell me about AI"
256
+ prompt_template=f'''A chat.
257
+ USER: {prompt}
258
+ ASSISTANT:
259
+ '''
260
+
261
+ # Convert prompt to tokens
262
+ tokens = tokenizer(
263
+ prompt_template,
264
+ return_tensors='pt'
265
+ ).input_ids.cuda()
266
+
267
+ generation_params = {
268
+ "do_sample": True,
269
+ "temperature": 0.7,
270
+ "top_p": 0.95,
271
+ "top_k": 40,
272
+ "max_new_tokens": 512,
273
+ "repetition_penalty": 1.1
274
+ }
275
+
276
+ # Generate streamed output, visible one token at a time
277
+ generation_output = model.generate(
278
+ tokens,
279
+ streamer=streamer,
280
+ **generation_params
281
+ )
282
+
283
+ # Generation without a streamer, which will include the prompt in the output
284
+ generation_output = model.generate(
285
+ tokens,
286
+ **generation_params
287
+ )
288
+
289
+ # Get the tokens from the output, decode them, print them
290
+ token_output = generation_output[0]
291
+ text_output = tokenizer.decode(token_output)
292
+ print("model.generate output: ", text_output)
293
+
294
+ # Inference is also possible via Transformers' pipeline
295
+ from transformers import pipeline
296
+
297
+ pipe = pipeline(
298
+ "text-generation",
299
+ model=model,
300
+ tokenizer=tokenizer,
301
+ **generation_params
302
+ )
303
+
304
+ pipe_output = pipe(prompt_template)[0]['generated_text']
305
+ print("pipeline output: ", pipe_output)
306
+
307
+ ```
308
+ <!-- README_AWQ.md-use-from-python end -->
309
+
310
+ <!-- README_AWQ.md-compatibility start -->
311
+ ## Compatibility
312
+
313
+ The files provided are tested to work with:
314
+
315
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
316
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
317
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
318
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
319
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
320
+
321
+ <!-- README_AWQ.md-compatibility end -->
322
+
323
+ <!-- footer start -->
324
+ <!-- 200823 -->
325
+ ## Discord
326
+
327
+ For further support, and discussions on these models and AI in general, join us at:
328
+
329
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
330
+
331
+ ## Thanks, and how to contribute
332
+
333
+ Thanks to the [chirper.ai](https://chirper.ai) team!
334
+
335
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
336
+
337
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
338
+
339
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
340
+
341
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
342
+
343
+ * Patreon: https://patreon.com/TheBlokeAI
344
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
345
+
346
+ **Special thanks to**: Aemon Algiz.
347
+
348
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
349
+
350
+
351
+ Thank you to all my generous patrons and donaters!
352
+
353
+ And thank you again to a16z for their generous grant.
354
+
355
+ <!-- footer end -->
356
+
357
+ # Original model card: Brandon's Platypus Yi 34B
358
+
359
+
360
+ # Instruction tune of Yi-34b with Open-Platypus (fp16)
361
+
362
+
363
+ ## Overview
364
+
365
+ This is [chargoddard/Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama), with instruction tuning performed with the [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) dataset. That base model is [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B), but using llama2 model definitions and tokenizer to remove any remote code requirements.
366
+
367
+ **This is a (merged) QLoRA fine-tune (rank 64)**.
368
+
369
+ The finetune was performed with 1x RTX 6000 Ada (~18 hours to this checkpoint). It is possible this is rather undertrained, as this checkpoint is at 1 epoch. I began to see some performance degradation after that; more hyperparameter tuning is probably warranted.
370
+
371
+ ## How to Use
372
+
373
+ Use as you would any llama-2 model.
374
+
375
+ ## Prompting:
376
+
377
+ Model was trained with legacy airoboros <2.0 system prompt. See [bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16) model card for details.