Text Generation
Transformers
Safetensors
English
llama
text-generation-inference
4-bit precision
gptq
TheBloke commited on
Commit
a9a6ac4
1 Parent(s): b34fd0f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -64
README.md CHANGED
@@ -1,13 +1,17 @@
1
  ---
 
 
 
2
  inference: false
3
  language:
4
  - en
5
  library_name: transformers
6
- license: other
7
  model_creator: Pankaj Mathur
8
  model_link: https://huggingface.co/psmathur/orca_mini_v3_7b
9
  model_name: Orca Mini v3 7B
10
  model_type: llama
 
11
  quantized_by: TheBloke
12
  ---
13
 
@@ -32,18 +36,24 @@ quantized_by: TheBloke
32
  - Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
33
  - Original model: [Orca Mini v3 7B](https://huggingface.co/psmathur/orca_mini_v3_7b)
34
 
 
35
  ## Description
36
 
37
  This repo contains GPTQ model files for [Pankaj Mathur's Orca Mini v3 7B](https://huggingface.co/psmathur/orca_mini_v3_7b).
38
 
39
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
40
 
 
 
41
  ## Repositories available
42
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ)
44
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_v3_7B-GGML)
 
45
  * [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_v3_7b)
 
46
 
 
47
  ## Prompt template: orca_mini
48
 
49
  ```
@@ -57,22 +67,26 @@ You are an AI assistant that follows instruction extremely well. Help as much as
57
  {input}
58
 
59
  ### Response:
 
60
  ```
61
 
 
 
 
62
  ## Provided files and GPTQ parameters
63
 
64
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
 
66
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
 
68
- All GPTQ files are made with AutoGPTQ.
69
 
70
  <details>
71
  <summary>Explanation of GPTQ parameters</summary>
72
 
73
  - Bits: The bit size of the quantised model.
74
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
76
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -82,15 +96,18 @@ All GPTQ files are made with AutoGPTQ.
82
 
83
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
- | [main](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
90
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
91
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
92
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.31 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
93
 
 
 
 
94
  ## How to download from branches
95
 
96
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/orca_mini_v3_7B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -99,73 +116,72 @@ All GPTQ files are made with AutoGPTQ.
99
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ
100
  ```
101
  - In Python Transformers code, the branch is the `revision` parameter; see below.
102
-
 
103
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
104
 
105
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
 
107
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
108
 
109
  1. Click the **Model tab**.
110
  2. Under **Download custom model or LoRA**, enter `TheBloke/orca_mini_v3_7B-GPTQ`.
111
  - To download from a specific branch, enter for example `TheBloke/orca_mini_v3_7B-GPTQ:gptq-4bit-32g-actorder_True`
112
  - see Provided Files above for the list of branches for each option.
113
  3. Click **Download**.
114
- 4. The model will start downloading. Once it's finished it will say "Done"
115
  5. In the top left, click the refresh icon next to **Model**.
116
  6. In the **Model** dropdown, choose the model you just downloaded: `orca_mini_v3_7B-GPTQ`
117
  7. The model will automatically load, and is now ready for use!
118
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
119
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
120
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
121
 
 
122
  ## How to use this GPTQ model from Python code
123
 
124
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
125
 
126
- ```
127
- pip3 install auto-gptq
128
- ```
129
 
130
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
131
  ```
 
 
 
 
132
  pip3 uninstall -y auto-gptq
133
  git clone https://github.com/PanQiWei/AutoGPTQ
134
  cd AutoGPTQ
135
  pip3 install .
136
  ```
137
 
138
- Then try the following example code:
 
 
 
 
 
 
 
 
139
 
140
  ```python
141
- from transformers import AutoTokenizer, pipeline, logging
142
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
143
 
144
  model_name_or_path = "TheBloke/orca_mini_v3_7B-GPTQ"
145
-
146
- use_triton = False
 
 
 
 
147
 
148
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
149
 
150
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
151
- use_safetensors=True,
152
- trust_remote_code=False,
153
- device="cuda:0",
154
- use_triton=use_triton,
155
- quantize_config=None)
156
-
157
- """
158
- # To download from a specific branch, use the revision parameter, as in this example:
159
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
160
-
161
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
162
- revision="gptq-4bit-32g-actorder_True",
163
- use_safetensors=True,
164
- trust_remote_code=False,
165
- device="cuda:0",
166
- quantize_config=None)
167
- """
168
-
169
  prompt = "Tell me about AI"
170
  prompt_template=f'''### System:
171
  You are an AI assistant that follows instruction extremely well. Help as much as you can.
@@ -177,6 +193,7 @@ You are an AI assistant that follows instruction extremely well. Help as much as
177
  {input}
178
 
179
  ### Response:
 
180
  '''
181
 
182
  print("\n\n*** Generate:")
@@ -187,9 +204,6 @@ print(tokenizer.decode(output[0]))
187
 
188
  # Inference can also be done using transformers' pipeline
189
 
190
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
191
- logging.set_verbosity(logging.CRITICAL)
192
-
193
  print("*** Pipeline:")
194
  pipe = pipeline(
195
  "text-generation",
@@ -203,12 +217,17 @@ pipe = pipeline(
203
 
204
  print(pipe(prompt_template)[0]['generated_text'])
205
  ```
 
206
 
 
207
  ## Compatibility
208
 
209
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
210
 
211
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
212
 
213
  <!-- footer start -->
214
  <!-- 200823 -->
@@ -233,7 +252,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
233
 
234
  **Special thanks to**: Aemon Algiz.
235
 
236
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
237
 
238
 
239
  Thank you to all my generous patrons and donaters!
@@ -249,11 +268,50 @@ And thank you again to a16z for their generous grant.
249
 
250
  A LLama2-7b model trained on Orca Style datasets.
251
 
252
- **I am actively seeking sponsorship and partnership opportunities. If you're interested, please connect with me at www.linkedin.com/in/pankajam.**
 
 
 
 
 
 
 
 
253
 
254
- ## Evaluation
255
 
256
- We evaluated orca_mini_v3_7b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
 
258
  Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
259
 
@@ -267,7 +325,9 @@ Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](htt
267
  |**Total Average**|-|**0.59865**||
268
 
269
 
270
- ## Example Usage
 
 
271
 
272
  Here is prompt format
273
 
@@ -308,23 +368,20 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
308
 
309
  ```
310
 
311
- #### Legal Disclaimer:
312
-
313
- This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
314
-
315
-
316
 
317
- #### Limitations & Biases:
318
 
319
- While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
320
 
321
- Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
322
 
323
  Exercise caution and cross-check information when necessary.
324
 
325
 
 
326
 
327
- ### Citiation:
328
 
329
  Please kindly cite using the following BibTeX:
330
 
@@ -341,7 +398,7 @@ Please kindly cite using the following BibTeX:
341
 
342
  ```
343
  @misc{mukherjee2023orca,
344
- title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
345
  author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
346
  year={2023},
347
  eprint={2306.02707},
 
1
  ---
2
+ datasets:
3
+ - psmathur/orca_mini_v1_dataset
4
+ - ehartford/dolphin
5
  inference: false
6
  language:
7
  - en
8
  library_name: transformers
9
+ license: llama2
10
  model_creator: Pankaj Mathur
11
  model_link: https://huggingface.co/psmathur/orca_mini_v3_7b
12
  model_name: Orca Mini v3 7B
13
  model_type: llama
14
+ pipeline_tag: text-generation
15
  quantized_by: TheBloke
16
  ---
17
 
 
36
  - Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
37
  - Original model: [Orca Mini v3 7B](https://huggingface.co/psmathur/orca_mini_v3_7b)
38
 
39
+ <!-- description start -->
40
  ## Description
41
 
42
  This repo contains GPTQ model files for [Pankaj Mathur's Orca Mini v3 7B](https://huggingface.co/psmathur/orca_mini_v3_7b).
43
 
44
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
 
46
+ <!-- description end -->
47
+ <!-- repositories-available start -->
48
  ## Repositories available
49
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_v3_7B-GGUF)
52
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/orca_mini_v3_7B-GGML)
53
  * [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_v3_7b)
54
+ <!-- repositories-available end -->
55
 
56
+ <!-- prompt-template start -->
57
  ## Prompt template: orca_mini
58
 
59
  ```
 
67
  {input}
68
 
69
  ### Response:
70
+
71
  ```
72
 
73
+ <!-- prompt-template end -->
74
+
75
+ <!-- README_GPTQ.md-provided-files start -->
76
  ## Provided files and GPTQ parameters
77
 
78
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
79
 
80
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
81
 
82
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
83
 
84
  <details>
85
  <summary>Explanation of GPTQ parameters</summary>
86
 
87
  - Bits: The bit size of the quantised model.
88
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
89
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
90
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
91
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
92
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
96
 
97
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
98
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
99
+ | [main](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
100
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
101
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
102
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
103
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
104
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
105
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
106
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.31 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
107
 
108
+ <!-- README_GPTQ.md-provided-files end -->
109
+
110
+ <!-- README_GPTQ.md-download-from-branches start -->
111
  ## How to download from branches
112
 
113
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/orca_mini_v3_7B-GPTQ:gptq-4bit-32g-actorder_True`
 
116
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ
117
  ```
118
  - In Python Transformers code, the branch is the `revision` parameter; see below.
119
+ <!-- README_GPTQ.md-download-from-branches end -->
120
+ <!-- README_GPTQ.md-text-generation-webui start -->
121
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
122
 
123
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
124
 
125
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
126
 
127
  1. Click the **Model tab**.
128
  2. Under **Download custom model or LoRA**, enter `TheBloke/orca_mini_v3_7B-GPTQ`.
129
  - To download from a specific branch, enter for example `TheBloke/orca_mini_v3_7B-GPTQ:gptq-4bit-32g-actorder_True`
130
  - see Provided Files above for the list of branches for each option.
131
  3. Click **Download**.
132
+ 4. The model will start downloading. Once it's finished it will say "Done".
133
  5. In the top left, click the refresh icon next to **Model**.
134
  6. In the **Model** dropdown, choose the model you just downloaded: `orca_mini_v3_7B-GPTQ`
135
  7. The model will automatically load, and is now ready for use!
136
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
137
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
138
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
139
+ <!-- README_GPTQ.md-text-generation-webui end -->
140
 
141
+ <!-- README_GPTQ.md-use-from-python start -->
142
  ## How to use this GPTQ model from Python code
143
 
144
+ ### Install the necessary packages
145
 
146
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
147
 
148
+ ```shell
149
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
150
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
151
  ```
152
+
153
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
154
+
155
+ ```shell
156
  pip3 uninstall -y auto-gptq
157
  git clone https://github.com/PanQiWei/AutoGPTQ
158
  cd AutoGPTQ
159
  pip3 install .
160
  ```
161
 
162
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
163
+
164
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
165
+ ```shell
166
+ pip3 uninstall -y transformers
167
+ pip3 install git+https://github.com/huggingface/transformers.git
168
+ ```
169
+
170
+ ### You can then use the following code
171
 
172
  ```python
173
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
174
 
175
  model_name_or_path = "TheBloke/orca_mini_v3_7B-GPTQ"
176
+ # To use a different branch, change revision
177
+ # For example: revision="gptq-4bit-32g-actorder_True"
178
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
179
+ torch_dtype=torch.float16,
180
+ device_map="auto",
181
+ revision="main")
182
 
183
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  prompt = "Tell me about AI"
186
  prompt_template=f'''### System:
187
  You are an AI assistant that follows instruction extremely well. Help as much as you can.
 
193
  {input}
194
 
195
  ### Response:
196
+
197
  '''
198
 
199
  print("\n\n*** Generate:")
 
204
 
205
  # Inference can also be done using transformers' pipeline
206
 
 
 
 
207
  print("*** Pipeline:")
208
  pipe = pipeline(
209
  "text-generation",
 
217
 
218
  print(pipe(prompt_template)[0]['generated_text'])
219
  ```
220
+ <!-- README_GPTQ.md-use-from-python end -->
221
 
222
+ <!-- README_GPTQ.md-compatibility start -->
223
  ## Compatibility
224
 
225
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
226
 
227
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
228
+
229
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
230
+ <!-- README_GPTQ.md-compatibility end -->
231
 
232
  <!-- footer start -->
233
  <!-- 200823 -->
 
252
 
253
  **Special thanks to**: Aemon Algiz.
254
 
255
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
256
 
257
 
258
  Thank you to all my generous patrons and donaters!
 
268
 
269
  A LLama2-7b model trained on Orca Style datasets.
270
 
271
+ <br>
272
+
273
+ ![orca-mini](https://huggingface.co/psmathur/orca_mini_v3_7b/resolve/main/orca_minis_small.jpeg)
274
+
275
+ <br>
276
+
277
+ 🤔 How good is orca-mini-v3-7b? Do the evaluation results from HuggingFace Open LLM leaderboard translate to real-world use cases?
278
+
279
+ 🔍 Now you can figure it out for yourself!
280
 
281
+ Introducing the orca-mini chatbot powered by the orca-mini-v3-7b model. Dive in and see how the open source 7b model stacks up in the world of massive language models. 🌍
282
 
283
+ Hurry up before I run out of GPU credits! 😉
284
+
285
+ Check it out here 👉
286
+
287
+ [https://huggingface.co/spaces/psmathur/psmathur-orca_mini_v3_7b](https://huggingface.co/spaces/psmathur/psmathur-orca_mini_v3_7b)
288
+
289
+
290
+ <br>
291
+
292
+ **P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.**
293
+
294
+ <br>
295
+
296
+ ### quantized versions
297
+
298
+ Big thanks to [@TheBloke](https://huggingface.co/TheBloke)
299
+
300
+ 1) https://huggingface.co/TheBloke/orca_mini_v3_7B-GGML
301
+
302
+ 2) https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ
303
+
304
+ <br>
305
+
306
+ #### license disclaimer:
307
+
308
+ This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
309
+
310
+ <br>
311
+
312
+ ## evaluation
313
+
314
+ We evaluated orca_mini_v3_7b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
315
 
316
  Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
317
 
 
325
  |**Total Average**|-|**0.59865**||
326
 
327
 
328
+ <br>
329
+
330
+ ## example esage
331
 
332
  Here is prompt format
333
 
 
368
 
369
  ```
370
 
371
+ <br>
 
 
 
 
372
 
373
+ #### limitations & biases:
374
 
375
+ While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
376
 
377
+ Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
378
 
379
  Exercise caution and cross-check information when necessary.
380
 
381
 
382
+ <br>
383
 
384
+ ### citiation:
385
 
386
  Please kindly cite using the following BibTeX:
387
 
 
398
 
399
  ```
400
  @misc{mukherjee2023orca,
401
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
402
  author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
403
  year={2023},
404
  eprint={2306.02707},