TheBloke commited on
Commit
0395085
·
1 Parent(s): 28be82d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -53
README.md CHANGED
@@ -36,18 +36,24 @@ quantized_by: TheBloke
36
  - Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
37
  - Original model: [Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b)
38
 
 
39
  ## Description
40
 
41
  This repo contains GPTQ model files for [Pankaj Mathur's Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b).
42
 
43
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
 
 
 
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ)
48
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML)
 
49
  * [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_v3_70b)
 
50
 
 
51
  ## Prompt template: Orca-Hashes
52
 
53
  ```
@@ -58,22 +64,26 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
58
  {prompt}
59
 
60
  ### Assistant:
 
61
  ```
62
 
 
 
 
63
  ## Provided files and GPTQ parameters
64
 
65
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
66
 
67
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
68
 
69
- All GPTQ files are made with AutoGPTQ.
70
 
71
  <details>
72
  <summary>Explanation of GPTQ parameters</summary>
73
 
74
  - Bits: The bit size of the quantised model.
75
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
76
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
77
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
78
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
79
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -83,13 +93,16 @@ All GPTQ files are made with AutoGPTQ.
83
 
84
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
85
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
86
- | [main](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
87
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
88
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
90
- | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
91
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
92
 
 
 
 
93
  ## How to download from branches
94
 
95
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/orca_mini_v3_70B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -98,73 +111,72 @@ All GPTQ files are made with AutoGPTQ.
98
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ
99
  ```
100
  - In Python Transformers code, the branch is the `revision` parameter; see below.
101
-
 
102
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
103
 
104
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
105
 
106
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
107
 
108
  1. Click the **Model tab**.
109
  2. Under **Download custom model or LoRA**, enter `TheBloke/orca_mini_v3_70B-GPTQ`.
110
  - To download from a specific branch, enter for example `TheBloke/orca_mini_v3_70B-GPTQ:gptq-4bit-32g-actorder_True`
111
  - see Provided Files above for the list of branches for each option.
112
  3. Click **Download**.
113
- 4. The model will start downloading. Once it's finished it will say "Done"
114
  5. In the top left, click the refresh icon next to **Model**.
115
  6. In the **Model** dropdown, choose the model you just downloaded: `orca_mini_v3_70B-GPTQ`
116
  7. The model will automatically load, and is now ready for use!
117
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
118
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
119
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
120
 
 
121
  ## How to use this GPTQ model from Python code
122
 
123
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
124
 
125
- ```
126
- pip3 install auto-gptq
127
- ```
128
 
129
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
130
  ```
 
 
 
 
131
  pip3 uninstall -y auto-gptq
132
  git clone https://github.com/PanQiWei/AutoGPTQ
133
  cd AutoGPTQ
134
  pip3 install .
135
  ```
136
 
137
- Then try the following example code:
 
 
 
 
 
 
 
 
138
 
139
  ```python
140
- from transformers import AutoTokenizer, pipeline, logging
141
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
142
 
143
  model_name_or_path = "TheBloke/orca_mini_v3_70B-GPTQ"
144
-
145
- use_triton = False
 
 
 
 
146
 
147
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
148
 
149
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
150
- use_safetensors=True,
151
- trust_remote_code=False,
152
- device="cuda:0",
153
- use_triton=use_triton,
154
- quantize_config=None)
155
-
156
- """
157
- # To download from a specific branch, use the revision parameter, as in this example:
158
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
159
-
160
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
161
- revision="gptq-4bit-32g-actorder_True",
162
- use_safetensors=True,
163
- trust_remote_code=False,
164
- device="cuda:0",
165
- quantize_config=None)
166
- """
167
-
168
  prompt = "Tell me about AI"
169
  prompt_template=f'''### System:
170
  {system_message}
@@ -173,6 +185,7 @@ prompt_template=f'''### System:
173
  {prompt}
174
 
175
  ### Assistant:
 
176
  '''
177
 
178
  print("\n\n*** Generate:")
@@ -183,9 +196,6 @@ print(tokenizer.decode(output[0]))
183
 
184
  # Inference can also be done using transformers' pipeline
185
 
186
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
187
- logging.set_verbosity(logging.CRITICAL)
188
-
189
  print("*** Pipeline:")
190
  pipe = pipeline(
191
  "text-generation",
@@ -199,12 +209,17 @@ pipe = pipeline(
199
 
200
  print(pipe(prompt_template)[0]['generated_text'])
201
  ```
 
202
 
 
203
  ## Compatibility
204
 
205
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
206
 
207
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
208
 
209
  <!-- footer start -->
210
  <!-- 200823 -->
@@ -229,7 +244,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
229
 
230
  **Special thanks to**: Aemon Algiz.
231
 
232
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
233
 
234
 
235
  Thank you to all my generous patrons and donaters!
@@ -245,6 +260,18 @@ And thank you again to a16z for their generous grant.
245
 
246
  A Llama2-70b model trained on Orca Style datasets.
247
 
 
 
 
 
 
 
 
 
 
 
 
 
248
  ### quantized versions
249
 
250
  Big thanks to [@TheBloke](https://huggingface.co/TheBloke)
@@ -253,15 +280,17 @@ Big thanks to [@TheBloke](https://huggingface.co/TheBloke)
253
 
254
  2) https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ
255
 
 
256
 
257
  #### license disclaimer:
258
 
259
  This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
260
 
 
261
 
262
  ## Evaluation
263
 
264
- We evaluated orca_mini_v3_70b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
265
 
266
  Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
267
 
@@ -275,7 +304,7 @@ Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](htt
275
  |**Total Average**|-|**0.722175**||
276
 
277
 
278
- **P.S. I am actively seeking sponsorship and partnership opportunities. If you're interested, please connect with me at www.linkedin.com/in/pankajam.**
279
 
280
  ## Example Usage
281
 
@@ -318,16 +347,17 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
318
 
319
  ```
320
 
 
321
 
322
  #### Limitations & Biases:
323
 
324
- While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
325
 
326
- Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
327
 
328
  Exercise caution and cross-check information when necessary.
329
 
330
-
331
 
332
  ### Citiation:
333
 
@@ -346,7 +376,7 @@ Please kindly cite using the following BibTeX:
346
 
347
  ```
348
  @misc{mukherjee2023orca,
349
- title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
350
  author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
351
  year={2023},
352
  eprint={2306.02707},
 
36
  - Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
37
  - Original model: [Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b)
38
 
39
+ <!-- description start -->
40
  ## Description
41
 
42
  This repo contains GPTQ model files for [Pankaj Mathur's Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b).
43
 
44
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
 
46
+ <!-- description end -->
47
+ <!-- repositories-available start -->
48
  ## Repositories available
49
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGUF)
52
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML)
53
  * [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_v3_70b)
54
+ <!-- repositories-available end -->
55
 
56
+ <!-- prompt-template start -->
57
  ## Prompt template: Orca-Hashes
58
 
59
  ```
 
64
  {prompt}
65
 
66
  ### Assistant:
67
+
68
  ```
69
 
70
+ <!-- prompt-template end -->
71
+
72
+ <!-- README_GPTQ.md-provided-files start -->
73
  ## Provided files and GPTQ parameters
74
 
75
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
76
 
77
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
78
 
79
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
80
 
81
  <details>
82
  <summary>Explanation of GPTQ parameters</summary>
83
 
84
  - Bits: The bit size of the quantised model.
85
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
86
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
87
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
88
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
89
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
93
 
94
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
95
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
96
+ | [main](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
97
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
98
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
99
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
100
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
101
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
102
 
103
+ <!-- README_GPTQ.md-provided-files end -->
104
+
105
+ <!-- README_GPTQ.md-download-from-branches start -->
106
  ## How to download from branches
107
 
108
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/orca_mini_v3_70B-GPTQ:gptq-4bit-32g-actorder_True`
 
111
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ
112
  ```
113
  - In Python Transformers code, the branch is the `revision` parameter; see below.
114
+ <!-- README_GPTQ.md-download-from-branches end -->
115
+ <!-- README_GPTQ.md-text-generation-webui start -->
116
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
 
118
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
119
 
120
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
121
 
122
  1. Click the **Model tab**.
123
  2. Under **Download custom model or LoRA**, enter `TheBloke/orca_mini_v3_70B-GPTQ`.
124
  - To download from a specific branch, enter for example `TheBloke/orca_mini_v3_70B-GPTQ:gptq-4bit-32g-actorder_True`
125
  - see Provided Files above for the list of branches for each option.
126
  3. Click **Download**.
127
+ 4. The model will start downloading. Once it's finished it will say "Done".
128
  5. In the top left, click the refresh icon next to **Model**.
129
  6. In the **Model** dropdown, choose the model you just downloaded: `orca_mini_v3_70B-GPTQ`
130
  7. The model will automatically load, and is now ready for use!
131
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
132
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
133
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
134
+ <!-- README_GPTQ.md-text-generation-webui end -->
135
 
136
+ <!-- README_GPTQ.md-use-from-python start -->
137
  ## How to use this GPTQ model from Python code
138
 
139
+ ### Install the necessary packages
140
 
141
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
142
 
143
+ ```shell
144
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
145
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
146
  ```
147
+
148
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
149
+
150
+ ```shell
151
  pip3 uninstall -y auto-gptq
152
  git clone https://github.com/PanQiWei/AutoGPTQ
153
  cd AutoGPTQ
154
  pip3 install .
155
  ```
156
 
157
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
158
+
159
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
160
+ ```shell
161
+ pip3 uninstall -y transformers
162
+ pip3 install git+https://github.com/huggingface/transformers.git
163
+ ```
164
+
165
+ ### You can then use the following code
166
 
167
  ```python
168
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
169
 
170
  model_name_or_path = "TheBloke/orca_mini_v3_70B-GPTQ"
171
+ # To use a different branch, change revision
172
+ # For example: revision="gptq-4bit-32g-actorder_True"
173
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
174
+ torch_dtype=torch.float16,
175
+ device_map="auto",
176
+ revision="main")
177
 
178
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
  prompt = "Tell me about AI"
181
  prompt_template=f'''### System:
182
  {system_message}
 
185
  {prompt}
186
 
187
  ### Assistant:
188
+
189
  '''
190
 
191
  print("\n\n*** Generate:")
 
196
 
197
  # Inference can also be done using transformers' pipeline
198
 
 
 
 
199
  print("*** Pipeline:")
200
  pipe = pipeline(
201
  "text-generation",
 
209
 
210
  print(pipe(prompt_template)[0]['generated_text'])
211
  ```
212
+ <!-- README_GPTQ.md-use-from-python end -->
213
 
214
+ <!-- README_GPTQ.md-compatibility start -->
215
  ## Compatibility
216
 
217
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
218
 
219
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
220
+
221
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
222
+ <!-- README_GPTQ.md-compatibility end -->
223
 
224
  <!-- footer start -->
225
  <!-- 200823 -->
 
244
 
245
  **Special thanks to**: Aemon Algiz.
246
 
247
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
248
 
249
 
250
  Thank you to all my generous patrons and donaters!
 
260
 
261
  A Llama2-70b model trained on Orca Style datasets.
262
 
263
+
264
+ <br>
265
+
266
+ ![orca-mini](https://huggingface.co/psmathur/orca_mini_v3_70b/resolve/main/orca_minis_small.jpeg)
267
+
268
+
269
+ <br>
270
+
271
+ **P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.**
272
+
273
+ <br>
274
+
275
  ### quantized versions
276
 
277
  Big thanks to [@TheBloke](https://huggingface.co/TheBloke)
 
280
 
281
  2) https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ
282
 
283
+ <br>
284
 
285
  #### license disclaimer:
286
 
287
  This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
288
 
289
+ <br>
290
 
291
  ## Evaluation
292
 
293
+ We evaluated orca_mini_v3_70b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
294
 
295
  Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
296
 
 
304
  |**Total Average**|-|**0.722175**||
305
 
306
 
307
+ <br>
308
 
309
  ## Example Usage
310
 
 
347
 
348
  ```
349
 
350
+ <br>
351
 
352
  #### Limitations & Biases:
353
 
354
+ While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
355
 
356
+ Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
357
 
358
  Exercise caution and cross-check information when necessary.
359
 
360
+ <br>
361
 
362
  ### Citiation:
363
 
 
376
 
377
  ```
378
  @misc{mukherjee2023orca,
379
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
380
  author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
381
  year={2023},
382
  eprint={2306.02707},