TheBloke commited on
Commit
526e8ee
1 Parent(s): 6575c65

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +496 -0
README.md ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openchat/openchat_3.5
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: OpenChat
6
+ model_name: OpenChat 3.5 7B
7
+ model_type: mistral
8
+ prompt_template: 'GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
9
+
10
+ '
11
+ quantized_by: TheBloke
12
+ ---
13
+ <!-- markdownlint-disable MD041 -->
14
+
15
+ <!-- header start -->
16
+ <!-- 200823 -->
17
+ <div style="width: auto; margin-left: auto; margin-right: auto">
18
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </div>
20
+ <div style="display: flex; justify-content: space-between; width: 100%;">
21
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
22
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
23
+ </div>
24
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
26
+ </div>
27
+ </div>
28
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
29
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
30
+ <!-- header end -->
31
+
32
+ # OpenChat 3.5 7B - GPTQ
33
+ - Model creator: [OpenChat](https://huggingface.co/openchat)
34
+ - Original model: [OpenChat 3.5 7B](https://huggingface.co/openchat/openchat_3.5)
35
+
36
+ <!-- description start -->
37
+ ## Description
38
+
39
+ This repo contains GPTQ model files for [OpenChat's OpenChat 3.5 7B](https://huggingface.co/openchat/openchat_3.5).
40
+
41
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
42
+
43
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
44
+
45
+ <!-- description end -->
46
+ <!-- repositories-available start -->
47
+ ## Repositories available
48
+
49
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/openchat_3.5-AWQ)
50
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/openchat_3.5-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/openchat_3.5-GGUF)
52
+ * [OpenChat's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openchat/openchat_3.5)
53
+ <!-- repositories-available end -->
54
+
55
+ <!-- prompt-template start -->
56
+ ## Prompt template: OpenChat
57
+
58
+ ```
59
+ GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
60
+
61
+ ```
62
+
63
+ <!-- prompt-template end -->
64
+
65
+
66
+
67
+ <!-- README_GPTQ.md-compatible clients start -->
68
+ ## Known compatible clients / servers
69
+
70
+ These GPTQ models are known to work in the following inference servers/webuis.
71
+
72
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
73
+ - [KoboldAI United](https://github.com/henk717/koboldai)
74
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
75
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
76
+
77
+ This may not be a complete list; if you know of others, please let me know!
78
+ <!-- README_GPTQ.md-compatible clients end -->
79
+
80
+ <!-- README_GPTQ.md-provided-files start -->
81
+ ## Provided files, and GPTQ parameters
82
+
83
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
84
+
85
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
86
+
87
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
88
+
89
+ <details>
90
+ <summary>Explanation of GPTQ parameters</summary>
91
+
92
+ - Bits: The bit size of the quantised model.
93
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
94
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
95
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
96
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
97
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
98
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
99
+
100
+ </details>
101
+
102
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
103
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
104
+ | [main](https://huggingface.co/TheBloke/openchat_3.5-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
105
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/openchat_3.5-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
106
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/openchat_3.5-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.95 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
107
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/openchat_3.5-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 5.00 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
108
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/openchat_3.5-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.97 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
109
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/openchat_3.5-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.30 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
110
+
111
+ <!-- README_GPTQ.md-provided-files end -->
112
+
113
+ <!-- README_GPTQ.md-download-from-branches start -->
114
+ ## How to download, including from branches
115
+
116
+ ### In text-generation-webui
117
+
118
+ To download from the `main` branch, enter `TheBloke/openchat_3.5-GPTQ` in the "Download model" box.
119
+
120
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/openchat_3.5-GPTQ:gptq-4bit-32g-actorder_True`
121
+
122
+ ### From the command line
123
+
124
+ I recommend using the `huggingface-hub` Python library:
125
+
126
+ ```shell
127
+ pip3 install huggingface-hub
128
+ ```
129
+
130
+ To download the `main` branch to a folder called `openchat_3.5-GPTQ`:
131
+
132
+ ```shell
133
+ mkdir openchat_3.5-GPTQ
134
+ huggingface-cli download TheBloke/openchat_3.5-GPTQ --local-dir openchat_3.5-GPTQ --local-dir-use-symlinks False
135
+ ```
136
+
137
+ To download from a different branch, add the `--revision` parameter:
138
+
139
+ ```shell
140
+ mkdir openchat_3.5-GPTQ
141
+ huggingface-cli download TheBloke/openchat_3.5-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir openchat_3.5-GPTQ --local-dir-use-symlinks False
142
+ ```
143
+
144
+ <details>
145
+ <summary>More advanced huggingface-cli download usage</summary>
146
+
147
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
148
+
149
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
150
+
151
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
152
+
153
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
154
+
155
+ ```shell
156
+ pip3 install hf_transfer
157
+ ```
158
+
159
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
160
+
161
+ ```shell
162
+ mkdir openchat_3.5-GPTQ
163
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/openchat_3.5-GPTQ --local-dir openchat_3.5-GPTQ --local-dir-use-symlinks False
164
+ ```
165
+
166
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
167
+ </details>
168
+
169
+ ### With `git` (**not** recommended)
170
+
171
+ To clone a specific branch with `git`, use a command like this:
172
+
173
+ ```shell
174
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/openchat_3.5-GPTQ
175
+ ```
176
+
177
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
178
+
179
+ <!-- README_GPTQ.md-download-from-branches end -->
180
+ <!-- README_GPTQ.md-text-generation-webui start -->
181
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
182
+
183
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
184
+
185
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
186
+
187
+ 1. Click the **Model tab**.
188
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/openchat_3.5-GPTQ`.
189
+
190
+ - To download from a specific branch, enter for example `TheBloke/openchat_3.5-GPTQ:gptq-4bit-32g-actorder_True`
191
+ - see Provided Files above for the list of branches for each option.
192
+
193
+ 3. Click **Download**.
194
+ 4. The model will start downloading. Once it's finished it will say "Done".
195
+ 5. In the top left, click the refresh icon next to **Model**.
196
+ 6. In the **Model** dropdown, choose the model you just downloaded: `openchat_3.5-GPTQ`
197
+ 7. The model will automatically load, and is now ready for use!
198
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
199
+
200
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
201
+
202
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
203
+
204
+ <!-- README_GPTQ.md-text-generation-webui end -->
205
+
206
+ <!-- README_GPTQ.md-use-from-tgi start -->
207
+ ## Serving this model from Text Generation Inference (TGI)
208
+
209
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
210
+
211
+ Example Docker parameters:
212
+
213
+ ```shell
214
+ --model-id TheBloke/openchat_3.5-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
215
+ ```
216
+
217
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
218
+
219
+ ```shell
220
+ pip3 install huggingface-hub
221
+ ```
222
+
223
+ ```python
224
+ from huggingface_hub import InferenceClient
225
+
226
+ endpoint_url = "https://your-endpoint-url-here"
227
+
228
+ prompt = "Tell me about AI"
229
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
230
+ '''
231
+
232
+ client = InferenceClient(endpoint_url)
233
+ response = client.text_generation(prompt,
234
+ max_new_tokens=128,
235
+ do_sample=True,
236
+ temperature=0.7,
237
+ top_p=0.95,
238
+ top_k=40,
239
+ repetition_penalty=1.1)
240
+
241
+ print(f"Model output: {response}")
242
+ ```
243
+ <!-- README_GPTQ.md-use-from-tgi end -->
244
+ <!-- README_GPTQ.md-use-from-python start -->
245
+ ## How to use this GPTQ model from Python code
246
+
247
+ ### Install the necessary packages
248
+
249
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
250
+
251
+ ```shell
252
+ pip3 install transformers optimum
253
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
254
+ ```
255
+
256
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
257
+
258
+ ```shell
259
+ pip3 uninstall -y auto-gptq
260
+ git clone https://github.com/PanQiWei/AutoGPTQ
261
+ cd AutoGPTQ
262
+ git checkout v0.4.2
263
+ pip3 install .
264
+ ```
265
+
266
+ ### You can then use the following code
267
+
268
+ ```python
269
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
270
+
271
+ model_name_or_path = "TheBloke/openchat_3.5-GPTQ"
272
+ # To use a different branch, change revision
273
+ # For example: revision="gptq-4bit-32g-actorder_True"
274
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
275
+ device_map="auto",
276
+ trust_remote_code=False,
277
+ revision="main")
278
+
279
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
280
+
281
+ prompt = "Tell me about AI"
282
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
283
+ '''
284
+
285
+ print("\n\n*** Generate:")
286
+
287
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
288
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
289
+ print(tokenizer.decode(output[0]))
290
+
291
+ # Inference can also be done using transformers' pipeline
292
+
293
+ print("*** Pipeline:")
294
+ pipe = pipeline(
295
+ "text-generation",
296
+ model=model,
297
+ tokenizer=tokenizer,
298
+ max_new_tokens=512,
299
+ do_sample=True,
300
+ temperature=0.7,
301
+ top_p=0.95,
302
+ top_k=40,
303
+ repetition_penalty=1.1
304
+ )
305
+
306
+ print(pipe(prompt_template)[0]['generated_text'])
307
+ ```
308
+ <!-- README_GPTQ.md-use-from-python end -->
309
+
310
+ <!-- README_GPTQ.md-compatibility start -->
311
+ ## Compatibility
312
+
313
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
314
+
315
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
316
+
317
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
318
+ <!-- README_GPTQ.md-compatibility end -->
319
+
320
+ <!-- footer start -->
321
+ <!-- 200823 -->
322
+ ## Discord
323
+
324
+ For further support, and discussions on these models and AI in general, join us at:
325
+
326
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
327
+
328
+ ## Thanks, and how to contribute
329
+
330
+ Thanks to the [chirper.ai](https://chirper.ai) team!
331
+
332
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
333
+
334
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
335
+
336
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
337
+
338
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
339
+
340
+ * Patreon: https://patreon.com/TheBlokeAI
341
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
342
+
343
+ **Special thanks to**: Aemon Algiz.
344
+
345
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
346
+
347
+
348
+ Thank you to all my generous patrons and donaters!
349
+
350
+ And thank you again to a16z for their generous grant.
351
+
352
+ <!-- footer end -->
353
+
354
+ # Original model card: OpenChat's OpenChat 3.5 7B
355
+
356
+
357
+ # OpenChat: Advancing Open-source Language Models with Mixed-Quality Data
358
+
359
+ <div align="center">
360
+ <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
361
+ </div>
362
+
363
+ <p align="center">
364
+ <a href="https://openchat.team">Online Demo</a> •
365
+ <a href="https://discord.gg/pQjnXvNKHY">Discord</a> •
366
+ <a href="https://huggingface.co/openchat">Huggingface</a> •
367
+ <a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a>
368
+ </p>
369
+
370
+ **🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥**
371
+
372
+ **🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖**
373
+
374
+ <div align="center">
375
+ <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat.png" style="width: 50%">
376
+ </div>
377
+
378
+ OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
379
+
380
+ [![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533)
381
+
382
+ ## Usage
383
+
384
+ To use this model, we highly recommend installing the OpenChat package by following the [installation guide](#installation) and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
385
+
386
+ Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](#web-ui) for a user-friendly experience.
387
+
388
+ If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
389
+
390
+ <details>
391
+ <summary>Example request (click to expand)</summary>
392
+
393
+ ```bash
394
+ curl http://localhost:18888/v1/chat/completions \
395
+ -H "Content-Type: application/json" \
396
+ -d '{
397
+ "model": "openchat_3.5",
398
+ "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
399
+ }'
400
+ ```
401
+
402
+ Coding Mode
403
+
404
+ ```bash
405
+ curl http://localhost:18888/v1/chat/completions \
406
+ -H "Content-Type: application/json" \
407
+ -d '{
408
+ "model": "openchat_3.5",
409
+ "condition": "Code",
410
+ "messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}]
411
+ }'
412
+ ```
413
+
414
+ </details>
415
+
416
+ | Model | Size | Context | Weights | Serving |
417
+ |--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
418
+ | OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` |
419
+
420
+ For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below.
421
+
422
+ <details>
423
+ <summary>Conversation templates (click to expand)</summary>
424
+
425
+ ```python
426
+ import transformers
427
+ tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
428
+
429
+ # Single-turn
430
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
431
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
432
+
433
+ # Multi-turn
434
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
435
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
436
+
437
+ # Coding Mode
438
+ tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
439
+ assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
440
+ ```
441
+
442
+ </details>
443
+
444
+ ## <a id="benchmarks"></a> Benchmarks
445
+
446
+ | Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K |
447
+ |--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------|
448
+ | OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** |
449
+ | ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 |
450
+ | Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 |
451
+ | Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 |
452
+ | | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B |
453
+
454
+ *: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
455
+
456
+ **: Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
457
+
458
+ ***: All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
459
+
460
+ ## Limitations
461
+
462
+ **Foundation Model Limitations**
463
+ Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
464
+
465
+ - Complex reasoning
466
+ - Mathematical and arithmetic tasks
467
+ - Programming and coding challenges
468
+
469
+ **Hallucination of Non-existent Information**
470
+ OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
471
+
472
+ **Safety**
473
+ OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
474
+
475
+ ## License
476
+
477
+ Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
478
+
479
+ ## Citation
480
+
481
+ ```
482
+ @article{wang2023openchat,
483
+ title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
484
+ author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
485
+ journal={arXiv preprint arXiv:2309.11235},
486
+ year={2023}
487
+ }
488
+ ```
489
+
490
+ ## Acknowledgements
491
+
492
+ We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training.
493
+
494
+ Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.
495
+
496
+ Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.