TheBloke commited on
Commit
ce9b562
1 Parent(s): 53ecaf5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +477 -0
README.md ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/open-instruct-human-mix-65b
3
+ datasets:
4
+ - databricks/databricks-dolly-15k
5
+ - OpenAssistant/oasst1
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: other
10
+ model_creator: Allen Institute for AI
11
+ model_name: Open Instruct Human Mix 65B
12
+ model_type: llama
13
+ prompt_template: '<|user|>
14
+
15
+ {prompt}
16
+
17
+ <|assistant|>
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ ---
22
+ <!-- markdownlint-disable MD041 -->
23
+
24
+ <!-- header start -->
25
+ <!-- 200823 -->
26
+ <div style="width: auto; margin-left: auto; margin-right: auto">
27
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
28
+ </div>
29
+ <div style="display: flex; justify-content: space-between; width: 100%;">
30
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
31
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
32
+ </div>
33
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
34
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
35
+ </div>
36
+ </div>
37
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
38
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
39
+ <!-- header end -->
40
+
41
+ # Open Instruct Human Mix 65B - GPTQ
42
+ - Model creator: [Allen Institute for AI](https://huggingface.co/allenai)
43
+ - Original model: [Open Instruct Human Mix 65B](https://huggingface.co/allenai/open-instruct-human-mix-65b)
44
+
45
+ <!-- description start -->
46
+ # Description
47
+
48
+ This repo contains GPTQ model files for [Allen Institute for AI's Open Instruct Human Mix 65B](https://huggingface.co/allenai/open-instruct-human-mix-65b).
49
+
50
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
51
+
52
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
53
+
54
+ <!-- description end -->
55
+ <!-- repositories-available start -->
56
+ ## Repositories available
57
+
58
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-AWQ)
59
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ)
60
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GGUF)
61
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-fp16)
62
+ * [Allen Institute for AI's original LoRA adapter, which can be merged on to the base model.](https://huggingface.co/allenai/open-instruct-human-mix-65b)
63
+ <!-- repositories-available end -->
64
+
65
+ <!-- prompt-template start -->
66
+ ## Prompt template: Tulu
67
+
68
+ ```
69
+ <|user|>
70
+ {prompt}
71
+ <|assistant|>
72
+
73
+ ```
74
+
75
+ <!-- prompt-template end -->
76
+
77
+
78
+
79
+ <!-- README_GPTQ.md-compatible clients start -->
80
+ ## Known compatible clients / servers
81
+
82
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
83
+
84
+ These GPTQ models are known to work in the following inference servers/webuis.
85
+
86
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
87
+ - [KoboldAI United](https://github.com/henk717/koboldai)
88
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
89
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
90
+
91
+ This may not be a complete list; if you know of others, please let me know!
92
+ <!-- README_GPTQ.md-compatible clients end -->
93
+
94
+ <!-- README_GPTQ.md-provided-files start -->
95
+ ## Provided files, and GPTQ parameters
96
+
97
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
98
+
99
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
100
+
101
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
102
+
103
+ <details>
104
+ <summary>Explanation of GPTQ parameters</summary>
105
+
106
+ - Bits: The bit size of the quantised model.
107
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
108
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
109
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
110
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
111
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
112
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
113
+
114
+ </details>
115
+
116
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
117
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
118
+ | [main](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 33.48 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
119
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 34.73 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
120
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 38.53 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
121
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 25.39 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
122
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 26.57 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
123
+ | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 30.18 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
124
+
125
+ <!-- README_GPTQ.md-provided-files end -->
126
+
127
+ <!-- README_GPTQ.md-download-from-branches start -->
128
+ ## How to download, including from branches
129
+
130
+ ### In text-generation-webui
131
+
132
+ To download from the `main` branch, enter `TheBloke/open-instruct-human-mix-65B-GPTQ` in the "Download model" box.
133
+
134
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/open-instruct-human-mix-65B-GPTQ:gptq-4bit-128g-actorder_True`
135
+
136
+ ### From the command line
137
+
138
+ I recommend using the `huggingface-hub` Python library:
139
+
140
+ ```shell
141
+ pip3 install huggingface-hub
142
+ ```
143
+
144
+ To download the `main` branch to a folder called `open-instruct-human-mix-65B-GPTQ`:
145
+
146
+ ```shell
147
+ mkdir open-instruct-human-mix-65B-GPTQ
148
+ huggingface-cli download TheBloke/open-instruct-human-mix-65B-GPTQ --local-dir open-instruct-human-mix-65B-GPTQ --local-dir-use-symlinks False
149
+ ```
150
+
151
+ To download from a different branch, add the `--revision` parameter:
152
+
153
+ ```shell
154
+ mkdir open-instruct-human-mix-65B-GPTQ
155
+ huggingface-cli download TheBloke/open-instruct-human-mix-65B-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir open-instruct-human-mix-65B-GPTQ --local-dir-use-symlinks False
156
+ ```
157
+
158
+ <details>
159
+ <summary>More advanced huggingface-cli download usage</summary>
160
+
161
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
162
+
163
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
164
+
165
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
166
+
167
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
168
+
169
+ ```shell
170
+ pip3 install hf_transfer
171
+ ```
172
+
173
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
174
+
175
+ ```shell
176
+ mkdir open-instruct-human-mix-65B-GPTQ
177
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/open-instruct-human-mix-65B-GPTQ --local-dir open-instruct-human-mix-65B-GPTQ --local-dir-use-symlinks False
178
+ ```
179
+
180
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
181
+ </details>
182
+
183
+ ### With `git` (**not** recommended)
184
+
185
+ To clone a specific branch with `git`, use a command like this:
186
+
187
+ ```shell
188
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/open-instruct-human-mix-65B-GPTQ
189
+ ```
190
+
191
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
192
+
193
+ <!-- README_GPTQ.md-download-from-branches end -->
194
+ <!-- README_GPTQ.md-text-generation-webui start -->
195
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
196
+
197
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
198
+
199
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
200
+
201
+ 1. Click the **Model tab**.
202
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/open-instruct-human-mix-65B-GPTQ`.
203
+
204
+ - To download from a specific branch, enter for example `TheBloke/open-instruct-human-mix-65B-GPTQ:gptq-4bit-128g-actorder_True`
205
+ - see Provided Files above for the list of branches for each option.
206
+
207
+ 3. Click **Download**.
208
+ 4. The model will start downloading. Once it's finished it will say "Done".
209
+ 5. In the top left, click the refresh icon next to **Model**.
210
+ 6. In the **Model** dropdown, choose the model you just downloaded: `open-instruct-human-mix-65B-GPTQ`
211
+ 7. The model will automatically load, and is now ready for use!
212
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
213
+
214
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
215
+
216
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
217
+
218
+ <!-- README_GPTQ.md-text-generation-webui end -->
219
+
220
+ <!-- README_GPTQ.md-use-from-tgi start -->
221
+ ## Serving this model from Text Generation Inference (TGI)
222
+
223
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
224
+
225
+ Example Docker parameters:
226
+
227
+ ```shell
228
+ --model-id TheBloke/open-instruct-human-mix-65B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
229
+ ```
230
+
231
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
232
+
233
+ ```shell
234
+ pip3 install huggingface-hub
235
+ ```
236
+
237
+ ```python
238
+ from huggingface_hub import InferenceClient
239
+
240
+ endpoint_url = "https://your-endpoint-url-here"
241
+
242
+ prompt = "Tell me about AI"
243
+ prompt_template=f'''<|user|>
244
+ {prompt}
245
+ <|assistant|>
246
+ '''
247
+
248
+ client = InferenceClient(endpoint_url)
249
+ response = client.text_generation(prompt,
250
+ max_new_tokens=128,
251
+ do_sample=True,
252
+ temperature=0.7,
253
+ top_p=0.95,
254
+ top_k=40,
255
+ repetition_penalty=1.1)
256
+
257
+ print(f"Model output: {response}")
258
+ ```
259
+ <!-- README_GPTQ.md-use-from-tgi end -->
260
+ <!-- README_GPTQ.md-use-from-python start -->
261
+ ## Python code example: inference from this GPTQ model
262
+
263
+ ### Install the necessary packages
264
+
265
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
266
+
267
+ ```shell
268
+ pip3 install --upgrade transformers optimum
269
+ # If using PyTorch 2.1 + CUDA 12.x:
270
+ pip3 install --upgrade auto-gptq
271
+ # or, if using PyTorch 2.1 + CUDA 11.x:
272
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
273
+ ```
274
+
275
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
276
+
277
+ ```shell
278
+ pip3 uninstall -y auto-gptq
279
+ git clone https://github.com/PanQiWei/AutoGPTQ
280
+ cd AutoGPTQ
281
+ git checkout v0.5.1
282
+ pip3 install .
283
+ ```
284
+
285
+ ### Example Python code
286
+
287
+ ```python
288
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
289
+
290
+ model_name_or_path = "TheBloke/open-instruct-human-mix-65B-GPTQ"
291
+ # To use a different branch, change revision
292
+ # For example: revision="gptq-4bit-128g-actorder_True"
293
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
294
+ device_map="auto",
295
+ trust_remote_code=False,
296
+ revision="main")
297
+
298
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
299
+
300
+ prompt = "Tell me about AI"
301
+ prompt_template=f'''<|user|>
302
+ {prompt}
303
+ <|assistant|>
304
+ '''
305
+
306
+ print("\n\n*** Generate:")
307
+
308
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
309
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
310
+ print(tokenizer.decode(output[0]))
311
+
312
+ # Inference can also be done using transformers' pipeline
313
+
314
+ print("*** Pipeline:")
315
+ pipe = pipeline(
316
+ "text-generation",
317
+ model=model,
318
+ tokenizer=tokenizer,
319
+ max_new_tokens=512,
320
+ do_sample=True,
321
+ temperature=0.7,
322
+ top_p=0.95,
323
+ top_k=40,
324
+ repetition_penalty=1.1
325
+ )
326
+
327
+ print(pipe(prompt_template)[0]['generated_text'])
328
+ ```
329
+ <!-- README_GPTQ.md-use-from-python end -->
330
+
331
+ <!-- README_GPTQ.md-compatibility start -->
332
+ ## Compatibility
333
+
334
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
335
+
336
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
337
+
338
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
339
+ <!-- README_GPTQ.md-compatibility end -->
340
+
341
+ <!-- footer start -->
342
+ <!-- 200823 -->
343
+ ## Discord
344
+
345
+ For further support, and discussions on these models and AI in general, join us at:
346
+
347
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
348
+
349
+ ## Thanks, and how to contribute
350
+
351
+ Thanks to the [chirper.ai](https://chirper.ai) team!
352
+
353
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
354
+
355
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
356
+
357
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
358
+
359
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
360
+
361
+ * Patreon: https://patreon.com/TheBlokeAI
362
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
363
+
364
+ **Special thanks to**: Aemon Algiz.
365
+
366
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
367
+
368
+
369
+ Thank you to all my generous patrons and donaters!
370
+
371
+ And thank you again to a16z for their generous grant.
372
+
373
+ <!-- footer end -->
374
+
375
+ # Original model card: Allen Institute for AI's Open Instruct Human Mix 65B
376
+
377
+
378
+ # Open-Instruct Human-mix 65B
379
+
380
+ This model is a 65B LLaMa model finetuned on a mixture of human-authored datasets (FLAN V2, CoT, Dolly, and Open Assistant 1). *Please note this is a model diff - see below for usage instructions*.
381
+
382
+ This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
383
+ The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
384
+
385
+ This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
386
+ The licenses can be found in [our codebase](https://github.com/allenai/open-instruct/tree/main/model_licenses) - see `tulu_license.txt` for the model license and `llama_license.txt` for the Llama license.
387
+
388
+
389
+ ## Usage
390
+
391
+ We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
392
+ [https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
393
+
394
+ Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
395
+ and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
396
+
397
+ Then, run:
398
+ ```bash
399
+ python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
400
+ ```
401
+
402
+ And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
403
+
404
+ ## Input Format
405
+
406
+ The model is trained to use the following format (note the newlines):
407
+ ```
408
+ <|user|>
409
+ Your message here!
410
+ <|assistant|>
411
+ ```
412
+
413
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
414
+
415
+ ## Performance
416
+
417
+ Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
418
+
419
+ | MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
420
+ |:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
421
+ | 60.7 | 61.6 | 8.0 | 57.5 | 50.1 | 52.7 | 58.5 | 15.9 | 24.5 | 43.2 | 46.5 | 43.8 |
422
+
423
+ If you use this model, please cite our work, the llama paper, and the original datasets:
424
+
425
+ ```
426
+ @misc{wang2023far,
427
+ title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
428
+ author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
429
+ year={2023},
430
+ eprint={2306.04751},
431
+ archivePrefix={arXiv},
432
+ primaryClass={cs.CL}
433
+ }
434
+ ```
435
+
436
+ ```
437
+ @misc{touvron2023llama,
438
+ title={LLaMA: Open and Efficient Foundation Language Models},
439
+ author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
440
+ year={2023},
441
+ eprint={2302.13971},
442
+ archivePrefix={arXiv},
443
+ primaryClass={cs.CL}
444
+ }
445
+ ```
446
+
447
+ ```
448
+ @misc{dolly,
449
+ author = {Databricks},
450
+ title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
451
+ year = {2023},
452
+ publisher = {GitHub},
453
+ journal = {GitHub repository},
454
+ howpublished = {Blog post},
455
+ url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
456
+ }
457
+ ```
458
+
459
+ ```
460
+ @article{longpre2023flan,
461
+ title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
462
+ author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
463
+ journal={arXiv preprint arXiv:2301.13688},
464
+ year={2023}
465
+ }
466
+ ```
467
+
468
+ ```
469
+ @misc{köpf2023openassistant,
470
+ title={OpenAssistant Conversations -- Democratizing Large Language Model Alignment},
471
+ author={Andreas Köpf and Yannic Kilcher and Dimitri von Rütte and Sotiris Anagnostidis and Zhi-Rui Tam and Keith Stevens and Abdullah Barhoum and Nguyen Minh Duc and Oliver Stanley and Richárd Nagyfi and Shahul ES and Sameer Suri and David Glushkov and Arnav Dantuluri and Andrew Maguire and Christoph Schuhmann and Huu Nguyen and Alexander Mattick},
472
+ year={2023},
473
+ eprint={2304.07327},
474
+ archivePrefix={arXiv},
475
+ primaryClass={cs.CL}
476
+ }
477
+ ```