Initial GPTQ model commit
Browse files
README.md
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
inference: false
|
3 |
+
license: other
|
4 |
+
---
|
5 |
+
|
6 |
+
<!-- header start -->
|
7 |
+
<div style="width: 100%;">
|
8 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
9 |
+
</div>
|
10 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
11 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
12 |
+
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
|
13 |
+
</div>
|
14 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
15 |
+
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
16 |
+
</div>
|
17 |
+
</div>
|
18 |
+
<!-- header end -->
|
19 |
+
|
20 |
+
# OpenAccess AI Collective's Minotaur 15B GPTQ
|
21 |
+
|
22 |
+
These files are GPTQ 4bit model files for [OpenAccess AI Collective's Minotaur 15B](https://huggingface.co/openaccess-ai-collective/minotaur-15b).
|
23 |
+
|
24 |
+
It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
|
25 |
+
|
26 |
+
## Repositories available
|
27 |
+
|
28 |
+
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/minotaur-15B-GPTQ)
|
29 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/minotaur-15B-GGML)
|
30 |
+
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/minotaur-15b)
|
31 |
+
|
32 |
+
## How to easily download and use this model in text-generation-webui
|
33 |
+
|
34 |
+
Please make sure you're using the latest version of text-generation-webui
|
35 |
+
|
36 |
+
1. Click the **Model tab**.
|
37 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/minotaur-15B-GPTQ`.
|
38 |
+
3. Click **Download**.
|
39 |
+
4. The model will start downloading. Once it's finished it will say "Done"
|
40 |
+
5. In the top left, click the refresh icon next to **Model**.
|
41 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `minotaur-15B-GPTQ`
|
42 |
+
7. The model will automatically load, and is now ready for use!
|
43 |
+
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
44 |
+
* Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
|
45 |
+
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
46 |
+
|
47 |
+
## How to use this GPTQ model from Python code
|
48 |
+
|
49 |
+
First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
|
50 |
+
|
51 |
+
`pip install auto-gptq`
|
52 |
+
|
53 |
+
Then try the following example code:
|
54 |
+
|
55 |
+
```python
|
56 |
+
from transformers import AutoTokenizer, pipeline, logging
|
57 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
58 |
+
import argparse
|
59 |
+
|
60 |
+
model_name_or_path = "TheBloke/minotaur-15B-GPTQ"
|
61 |
+
model_basename = "gptq_model-4bit-128g"
|
62 |
+
|
63 |
+
use_triton = False
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
66 |
+
|
67 |
+
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
68 |
+
model_basename=model_basename,
|
69 |
+
use_safetensors=True,
|
70 |
+
trust_remote_code=False,
|
71 |
+
device="cuda:0",
|
72 |
+
use_triton=use_triton,
|
73 |
+
quantize_config=None)
|
74 |
+
|
75 |
+
# Note: check the prompt template is correct for this model.
|
76 |
+
prompt = "Tell me about AI"
|
77 |
+
prompt_template=f'''### Human: {prompt}
|
78 |
+
### Assistant:'''
|
79 |
+
|
80 |
+
print("\n\n*** Generate:")
|
81 |
+
|
82 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
83 |
+
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
|
84 |
+
print(tokenizer.decode(output[0]))
|
85 |
+
|
86 |
+
# Inference can also be done using transformers' pipeline
|
87 |
+
|
88 |
+
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
|
89 |
+
logging.set_verbosity(logging.CRITICAL)
|
90 |
+
|
91 |
+
print("*** Pipeline:")
|
92 |
+
pipe = pipeline(
|
93 |
+
"text-generation",
|
94 |
+
model=model,
|
95 |
+
tokenizer=tokenizer,
|
96 |
+
max_new_tokens=512,
|
97 |
+
temperature=0.7,
|
98 |
+
top_p=0.95,
|
99 |
+
repetition_penalty=1.15
|
100 |
+
)
|
101 |
+
|
102 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
103 |
+
```
|
104 |
+
|
105 |
+
## Provided files
|
106 |
+
|
107 |
+
**gptq_model-4bit-128g.safetensors**
|
108 |
+
|
109 |
+
This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
|
110 |
+
|
111 |
+
It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
|
112 |
+
|
113 |
+
* `gptq_model-4bit-128g.safetensors`
|
114 |
+
* Works with AutoGPTQ in CUDA or Triton modes.
|
115 |
+
* Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
|
116 |
+
* Works with text-generation-webui, including one-click-installers.
|
117 |
+
* Parameters: Groupsize = 128. Act Order / desc_act = False.
|
118 |
+
|
119 |
+
<!-- footer start -->
|
120 |
+
## Discord
|
121 |
+
|
122 |
+
For further support, and discussions on these models and AI in general, join us at:
|
123 |
+
|
124 |
+
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
|
125 |
+
|
126 |
+
## Thanks, and how to contribute.
|
127 |
+
|
128 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
129 |
+
|
130 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
131 |
+
|
132 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
133 |
+
|
134 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
135 |
+
|
136 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
137 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
138 |
+
|
139 |
+
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
|
140 |
+
|
141 |
+
**Patreon special mentions**: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke.
|
142 |
+
|
143 |
+
Thank you to all my generous patrons and donaters!
|
144 |
+
|
145 |
+
<!-- footer end -->
|
146 |
+
|
147 |
+
# Original model card: OpenAccess AI Collective's Minotaur 15B
|
148 |
+
|
149 |
+
|
150 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
151 |
+
**[💵 Donate to OpenAccess AI Collective](https://github.com/sponsors/OpenAccess-AI-Collective) to help us keep building great tools and models!**
|
152 |
+
|
153 |
+
# Minotaur 15B 8K
|
154 |
+
|
155 |
+
Minotaur 15B is an instruct fine-tuned model on top of Starcoder Plus. Minotaur 15B is fine-tuned **on only completely open datasets** making this model reproducible by anyone.
|
156 |
+
Minotaur 15B has a context length of 8K tokens, allowing for strong recall at long contexts.
|
157 |
+
|
158 |
+
Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/PugNNHAF5r) or email [wing@openaccessaicollective.org](mailto:wing@openaccessaicollective.org)
|
159 |
+
|
160 |
+
# Prompts
|
161 |
+
Chat only style prompts using `USER:`,`ASSISTANT:`.
|
162 |
+
|
163 |
+
<img src="https://huggingface.co/openaccess-ai-collective/minotaur-13b/resolve/main/minotaur.png" alt="minotaur" width="600" height="500"/>
|
164 |
+
|
165 |
+
# Training Datasets
|
166 |
+
|
167 |
+
Minotaur 15B model is fine-tuned on the following openly available datasets:
|
168 |
+
|
169 |
+
- [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered)
|
170 |
+
- [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT)
|
171 |
+
- [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct)
|
172 |
+
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses
|
173 |
+
- [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization
|
174 |
+
- [camel-ai/math](https://huggingface.co/datasets/camel-ai/math)
|
175 |
+
- [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)
|
176 |
+
- [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)
|
177 |
+
- [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)
|
178 |
+
- [winglian/evals](https://huggingface.co/datasets/winglian/evals) - instruct augmented datasets
|
179 |
+
- custom sysnthetic datasets around misconceptions, in-context qa, jokes, N-tasks problems, and context-insensitivity
|
180 |
+
- ARC-Easy & ARC-Challenge - instruct augmented for detailed responses, derived from the `train` split
|
181 |
+
- [hellaswag](https://huggingface.co/datasets/hellaswag) - 30K+ rows of instruct augmented for detailed explanations w 30K+ rows, derived from the `train` split
|
182 |
+
- [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented, derived from the `train` split
|
183 |
+
- [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented, derived from the `train` split
|
184 |
+
- prose generation
|
185 |
+
|
186 |
+
# Shoutouts
|
187 |
+
|
188 |
+
Special thanks to Nanobit for helping with Axolotl and TheBloke for quantizing these models are more accessible to all.
|
189 |
+
|
190 |
+
# Demo
|
191 |
+
|
192 |
+
HF Demo in Spaces available in the [Community ChatBot Arena](https://huggingface.co/spaces/openaccess-ai-collective/rlhf-arena) under the OAAIC Chatbots tab.
|
193 |
+
|
194 |
+
## Release Notes
|
195 |
+
|
196 |
+
- https://wandb.ai/wing-lian/minotaur-16b-8k/runs/tshgbl2k
|
197 |
+
|
198 |
+
## Build
|
199 |
+
|
200 |
+
Minotaur was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 4XA100 80GB
|
201 |
+
- 1 epochs taking approximately 30 hours
|
202 |
+
- Trained using QLoRA techniques
|
203 |
+
|
204 |
+
## Bias, Risks, and Limitations
|
205 |
+
Minotaur has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
|
206 |
+
Minotaur was fine-tuned from the base model StarCoder, please refer to its model card's Limitations Section for relevant information. (included below)
|
207 |
+
|
208 |
+
## Benchmarks
|
209 |
+
|
210 |
+
TBD
|
211 |
+
|
212 |
+
## Examples
|
213 |
+
|
214 |
+
TBD
|
215 |
+
|
216 |
+
# StarCoderPlus
|
217 |
+
|
218 |
+
Play with the instruction-tuned StarCoderPlus at [StarChat-Beta](https://huggingface.co/spaces/HuggingFaceH4/starchat-playground).
|
219 |
+
|
220 |
+
## Table of Contents
|
221 |
+
|
222 |
+
1. [Model Summary](##model-summary)
|
223 |
+
2. [Use](##use)
|
224 |
+
3. [Limitations](##limitations)
|
225 |
+
4. [Training](##training)
|
226 |
+
5. [License](##license)
|
227 |
+
6. [Citation](##citation)
|
228 |
+
|
229 |
+
## Model Summary
|
230 |
+
|
231 |
+
StarCoderPlus is a fine-tuned version of [StarCoderBase](https://huggingface.co/bigcode/starcoderbase) on 600B tokens from the English web dataset [RedefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
232 |
+
combined with [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack) and a Wikipedia dataset.
|
233 |
+
It's a 15.5B parameter Language Model trained on English and 80+ programming languages. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150),
|
234 |
+
[a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1.6 trillion tokens.
|
235 |
+
|
236 |
+
- **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
|
237 |
+
- **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
|
238 |
+
- **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
|
239 |
+
- **Languages:** English & 80+ Programming languages
|
240 |
+
|
241 |
+
|
242 |
+
## Use
|
243 |
+
|
244 |
+
### Intended use
|
245 |
+
|
246 |
+
The model was trained on English and GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, the instruction-tuned version in [StarChat](hhttps://huggingface.co/spaces/HuggingFaceH4/starchat-playground) makes a capable assistant.
|
247 |
+
|
248 |
+
**Feel free to share your generations in the Community tab!**
|
249 |
+
|
250 |
+
### Generation
|
251 |
+
```python
|
252 |
+
# pip install -q transformers
|
253 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
254 |
+
|
255 |
+
checkpoint = "bigcode/starcoderplus"
|
256 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
257 |
+
|
258 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
259 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
260 |
+
|
261 |
+
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
|
262 |
+
outputs = model.generate(inputs)
|
263 |
+
print(tokenizer.decode(outputs[0]))
|
264 |
+
```
|
265 |
+
|
266 |
+
### Fill-in-the-middle
|
267 |
+
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
|
268 |
+
|
269 |
+
```python
|
270 |
+
input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
|
271 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
272 |
+
outputs = model.generate(inputs)
|
273 |
+
print(tokenizer.decode(outputs[0]))
|
274 |
+
```
|
275 |
+
|
276 |
+
### Attribution & Other Requirements
|
277 |
+
|
278 |
+
The training code dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
|
279 |
+
|
280 |
+
# Limitations
|
281 |
+
|
282 |
+
The model has been trained on a mixture of English text from the web and GitHub code. Therefore it might encounter limitations when working with non-English text, and can carry the stereotypes and biases commonly encountered online.
|
283 |
+
Additionally, the generated code should be used with caution as it may contain errors, inefficiencies, or potential vulnerabilities. For a more comprehensive understanding of the base model's code limitations, please refer to See [StarCoder paper](hhttps://arxiv.org/abs/2305.06161).
|
284 |
+
|
285 |
+
# Training
|
286 |
+
StarCoderPlus is a fine-tuned version on 600B English and code tokens of StarCoderBase, which was pre-trained on 1T code tokens. Below are the fine-tuning details:
|
287 |
+
|
288 |
+
## Model
|
289 |
+
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
|
290 |
+
- **Finetuning steps:** 150k
|
291 |
+
- **Finetuning tokens:** 600B
|
292 |
+
- **Precision:** bfloat16
|
293 |
+
|
294 |
+
## Hardware
|
295 |
+
|
296 |
+
- **GPUs:** 512 Tesla A100
|
297 |
+
- **Training time:** 14 days
|
298 |
+
|
299 |
+
## Software
|
300 |
+
|
301 |
+
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
|
302 |
+
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
|
303 |
+
- **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
|
304 |
+
|
305 |
+
# License
|
306 |
+
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
|