TheBloke commited on
Commit
a676935
1 Parent(s): 8503e19

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +75 -54
README.md CHANGED
@@ -1,24 +1,6 @@
1
  ---
2
  inference: false
3
  license: other
4
- tags:
5
- - OpenAccess AI Collective
6
- - MPT
7
- - axolotl
8
- datasets:
9
- - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
10
- - QingyiSi/Alpaca-CoT
11
- - teknium/GPTeacher-General-Instruct
12
- - metaeval/ScienceQA_text_only
13
- - hellaswag
14
- - openai/summarize_from_feedback
15
- - riddle_sense
16
- - gsm8k
17
- - camel-ai/math
18
- - camel-ai/biology
19
- - camel-ai/physics
20
- - camel-ai/chemistry
21
- - winglian/evals
22
  ---
23
 
24
  <!-- header start -->
@@ -27,7 +9,7 @@ datasets:
27
  </div>
28
  <div style="display: flex; justify-content: space-between; width: 100%;">
29
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
30
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
31
  </div>
32
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
33
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -37,22 +19,62 @@ datasets:
37
 
38
  # OpenAccess AI Collective's Minotaur 13B Fixed GPTQ
39
 
40
- These files are GPTQ 4bit model files for [OpenAccess AI Collective's Minotaur 13B Fixed](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed).
41
 
42
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
 
 
43
 
44
  ## Repositories available
45
 
46
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/minotaur-13B-fixed-GPTQ)
47
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/minotaur-13B-fixed-GGML)
48
- * [OpenAccess AI Collective's unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed)
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- ## How to easily download and use this model in text-generation-webui
51
 
52
- Please make sure you're using the latest version of text-generation-webui
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  1. Click the **Model tab**.
55
  2. Under **Download custom model or LoRA**, enter `TheBloke/minotaur-13B-fixed-GPTQ`.
 
 
56
  3. Click **Download**.
57
  4. The model will start downloading. Once it's finished it will say "Done"
58
  5. In the top left, click the refresh icon next to **Model**.
@@ -62,26 +84,17 @@ Please make sure you're using the latest version of text-generation-webui
62
  * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
63
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
64
 
65
- ## Prompt template
66
-
67
- ```
68
- The following is a chat between a USER and a friendly and helpful ASSISTANT.
69
- USER: prompt
70
- ASSISTANT:
71
- ```
72
-
73
  ## How to use this GPTQ model from Python code
74
 
75
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
76
 
77
- `pip install auto-gptq`
78
 
79
  Then try the following example code:
80
 
81
  ```python
82
  from transformers import AutoTokenizer, pipeline, logging
83
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
84
- import argparse
85
 
86
  model_name_or_path = "TheBloke/minotaur-13B-fixed-GPTQ"
87
  model_basename = "minotaur-13b-GPTQ-4bit-128g.no-act.order"
@@ -91,16 +104,32 @@ use_triton = False
91
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
92
 
93
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
94
- model_basename=model_basename,
95
  use_safetensors=True,
96
- trust_remote_code=False,
97
  device="cuda:0",
98
  use_triton=use_triton,
99
  quantize_config=None)
100
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  prompt = "Tell me about AI"
102
- prompt_template=f'''### Human: {prompt}
103
- ### Assistant:'''
 
 
 
 
104
 
105
  print("\n\n*** Generate:")
106
 
@@ -127,26 +156,18 @@ pipe = pipeline(
127
  print(pipe(prompt_template)[0]['generated_text'])
128
  ```
129
 
130
- ## Provided files
131
-
132
- **minotaur-13b-GPTQ-4bit-128g.no-act.order.safetensors**
133
-
134
- This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
135
 
136
- It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
137
 
138
- * `minotaur-13b-GPTQ-4bit-128g.no-act.order.safetensors`
139
- * Works with AutoGPTQ in CUDA or Triton modes.
140
- * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
141
- * Works with text-generation-webui, including one-click-installers.
142
- * Parameters: Groupsize = 128. Act Order / desc_act = False.
143
 
144
  <!-- footer start -->
145
  ## Discord
146
 
147
  For further support, and discussions on these models and AI in general, join us at:
148
 
149
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
150
 
151
  ## Thanks, and how to contribute.
152
 
@@ -161,9 +182,9 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
161
  * Patreon: https://patreon.com/TheBlokeAI
162
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
163
 
164
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
165
 
166
- **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
167
 
168
  Thank you to all my generous patrons and donaters!
169
 
@@ -175,7 +196,7 @@ Thank you to all my generous patrons and donaters!
175
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
176
  **[💵 Donate to OpenAccess AI Collective](https://github.com/sponsors/OpenAccess-AI-Collective) to help us keep building great tools and models!**
177
 
178
- # Due to a bug, the initial release dropped a few datasets during training. We've corrected the issue and retrained the model
179
 
180
  The affected datasets include:
181
  - prose generation
 
1
  ---
2
  inference: false
3
  license: other
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  <!-- header start -->
 
9
  </div>
10
  <div style="display: flex; justify-content: space-between; width: 100%;">
11
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
13
  </div>
14
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
19
 
20
  # OpenAccess AI Collective's Minotaur 13B Fixed GPTQ
21
 
22
+ These files are GPTQ model files for [OpenAccess AI Collective's Minotaur 13B Fixed](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed).
23
 
24
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
25
+
26
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
27
 
28
  ## Repositories available
29
 
30
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/minotaur-13B-fixed-GPTQ)
31
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/minotaur-13B-fixed-GGML)
32
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed)
33
+
34
+ ## Prompt template: Vicuna
35
+
36
+ ```
37
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
38
+
39
+ USER: {prompt}
40
+ ASSISTANT:
41
+
42
+ ```
43
+
44
+ ## Provided files
45
 
46
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
47
 
48
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
49
+
50
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
51
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
52
+ | main | 4 | 128 | False | 7.45 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
53
+ | gptq-4bit-32g-actorder_True | 4 | 32 | 1 | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
54
+ | gptq-4bit-64g-actorder_True | 4 | 64 | 1 | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
55
+ | gptq-4bit-128g-actorder_True | 4 | 128 | 1 | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order androup size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
56
+ | gptq-8bit--1g-actorder_True | 8 | None | 1 | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
57
+ | gptq-8bit-128g-actorder_False | 8 | 128 | 0 | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
58
+
59
+ ## How to download from branches
60
+
61
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/minotaur-13B-fixed-GPTQ:gptq-4bit-32g-actorder_True`
62
+ - With Git, you can clone a branch with:
63
+ ```
64
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/minotaur-13B-fixed-GPTQ`
65
+ ```
66
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
67
+
68
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
69
+
70
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
71
+
72
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
73
 
74
  1. Click the **Model tab**.
75
  2. Under **Download custom model or LoRA**, enter `TheBloke/minotaur-13B-fixed-GPTQ`.
76
+ - To download from a specific branch, enter for example `TheBloke/minotaur-13B-fixed-GPTQ:gptq-4bit-32g-actorder_True`
77
+ - see Provided Files above for the list of branches for each option.
78
  3. Click **Download**.
79
  4. The model will start downloading. Once it's finished it will say "Done"
80
  5. In the top left, click the refresh icon next to **Model**.
 
84
  * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
85
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
86
 
 
 
 
 
 
 
 
 
87
  ## How to use this GPTQ model from Python code
88
 
89
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
90
 
91
+ `GITHUB_ACTIONS=true pip install auto-gptq`
92
 
93
  Then try the following example code:
94
 
95
  ```python
96
  from transformers import AutoTokenizer, pipeline, logging
97
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
 
98
 
99
  model_name_or_path = "TheBloke/minotaur-13B-fixed-GPTQ"
100
  model_basename = "minotaur-13b-GPTQ-4bit-128g.no-act.order"
 
104
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
105
 
106
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
107
+ model_basename=model_basename
108
  use_safetensors=True,
109
+ trust_remote_code=True,
110
  device="cuda:0",
111
  use_triton=use_triton,
112
  quantize_config=None)
113
 
114
+ """
115
+ To download from a specific branch, use the revision parameter, as in this example:
116
+
117
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
118
+ revision="gptq-4bit-32g-actorder_True",
119
+ model_basename=model_basename,
120
+ use_safetensors=True,
121
+ trust_remote_code=True,
122
+ device="cuda:0",
123
+ quantize_config=None)
124
+ """
125
+
126
  prompt = "Tell me about AI"
127
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
128
+
129
+ USER: {prompt}
130
+ ASSISTANT:
131
+
132
+ '''
133
 
134
  print("\n\n*** Generate:")
135
 
 
156
  print(pipe(prompt_template)[0]['generated_text'])
157
  ```
158
 
159
+ ## Compatibility
 
 
 
 
160
 
161
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
162
 
163
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
 
164
 
165
  <!-- footer start -->
166
  ## Discord
167
 
168
  For further support, and discussions on these models and AI in general, join us at:
169
 
170
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
171
 
172
  ## Thanks, and how to contribute.
173
 
 
182
  * Patreon: https://patreon.com/TheBlokeAI
183
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
184
 
185
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
186
 
187
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
188
 
189
  Thank you to all my generous patrons and donaters!
190
 
 
196
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
197
  **[💵 Donate to OpenAccess AI Collective](https://github.com/sponsors/OpenAccess-AI-Collective) to help us keep building great tools and models!**
198
 
199
+ # Due to a bug, the initial release of Minotaur 13B dropped a few datasets during training. We have corrected the issue and this is the retrained model
200
 
201
  The affected datasets include:
202
  - prose generation