TheBloke commited on
Commit
37b0163
1 Parent(s): d70e358

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +733 -0
README.md ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: fblgit/juanako-7b-UNA
3
+ datasets:
4
+ - HuggingFaceH4/ultrafeedback_binarized
5
+ inference: false
6
+ license: apache-2.0
7
+ model-index:
8
+ - name: juanako-7b-UNA
9
+ results:
10
+ - dataset:
11
+ config: multiple_choice
12
+ name: truthful_qa
13
+ split: validation
14
+ type: text-generation
15
+ metrics:
16
+ - type: accuracy
17
+ value: 65.13
18
+ verified: true
19
+ task:
20
+ name: TruthfulQA (MC2)
21
+ type: text-generation
22
+ - dataset:
23
+ config: ARC-Challenge
24
+ name: ai2_arc
25
+ split: test
26
+ type: text-generation
27
+ metrics:
28
+ - type: accuracy
29
+ value: 68.17
30
+ verified: true
31
+ task:
32
+ name: ARC-Challenge
33
+ type: text-generation
34
+ - dataset:
35
+ name: Rowan/hellaswag
36
+ split: test
37
+ type: text-generation
38
+ metrics:
39
+ - type: accuracy
40
+ value: 85.34
41
+ verified: true
42
+ task:
43
+ name: HellaSwag
44
+ type: text-generation
45
+ - dataset:
46
+ config: winogrande_debiased
47
+ name: winogrande
48
+ split: test
49
+ type: text-generation
50
+ metrics:
51
+ - type: accuracy
52
+ value: 78.85
53
+ verified: true
54
+ task:
55
+ name: Winogrande
56
+ type: text-generation
57
+ - dataset:
58
+ config: all
59
+ name: cais/mmlu
60
+ split: test
61
+ type: text-generation
62
+ metrics:
63
+ - type: accuracy
64
+ value: 62.47
65
+ verified: true
66
+ task:
67
+ name: MMLU
68
+ type: text-generation
69
+ - dataset:
70
+ name: piqa
71
+ split: test
72
+ type: text-generation
73
+ metrics:
74
+ - type: accuracy
75
+ value: 83.57
76
+ task:
77
+ name: PiQA
78
+ type: text-generation
79
+ - dataset:
80
+ name: drop
81
+ split: validation
82
+ type: text-generation
83
+ metrics:
84
+ - type: accuracy
85
+ value: 38.74
86
+ verified: true
87
+ task:
88
+ name: DROP
89
+ type: text-generation
90
+ - dataset:
91
+ config: pubmed_qa_artificial_bigbio_qa
92
+ name: bigbio/pubmed_qa
93
+ split: validation
94
+ type: text-generation
95
+ metrics:
96
+ - type: accuracy
97
+ value: 76.0
98
+ task:
99
+ name: PubMedQA
100
+ type: text-generation
101
+ model_creator: FBL
102
+ model_name: Juanako 7B UNA
103
+ model_type: mistral
104
+ prompt_template: '<|im_start|>system
105
+
106
+ {system_message}<|im_end|>
107
+
108
+ <|im_start|>user
109
+
110
+ {prompt}<|im_end|>
111
+
112
+ <|im_start|>assistant
113
+
114
+ '
115
+ quantized_by: TheBloke
116
+ tags:
117
+ - alignment-handbook
118
+ - generated_from_trainer
119
+ - juanako
120
+ - mistral
121
+ - UNA
122
+ ---
123
+ <!-- markdownlint-disable MD041 -->
124
+
125
+ <!-- header start -->
126
+ <!-- 200823 -->
127
+ <div style="width: auto; margin-left: auto; margin-right: auto">
128
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
129
+ </div>
130
+ <div style="display: flex; justify-content: space-between; width: 100%;">
131
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
132
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
133
+ </div>
134
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
135
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
136
+ </div>
137
+ </div>
138
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
139
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
140
+ <!-- header end -->
141
+
142
+ # Juanako 7B UNA - AWQ
143
+ - Model creator: [FBL](https://huggingface.co/fblgit)
144
+ - Original model: [Juanako 7B UNA](https://huggingface.co/fblgit/juanako-7b-UNA)
145
+
146
+ <!-- description start -->
147
+ ## Description
148
+
149
+ This repo contains AWQ model files for [FBL's Juanako 7B UNA](https://huggingface.co/fblgit/juanako-7b-UNA).
150
+
151
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
152
+
153
+
154
+ ### About AWQ
155
+
156
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
157
+
158
+ It is supported by:
159
+
160
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
161
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
162
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
163
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
164
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
165
+
166
+ <!-- description end -->
167
+ <!-- repositories-available start -->
168
+ ## Repositories available
169
+
170
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/juanako-7B-UNA-AWQ)
171
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/juanako-7B-UNA-GPTQ)
172
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/juanako-7B-UNA-GGUF)
173
+ * [FBL's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/fblgit/juanako-7b-UNA)
174
+ <!-- repositories-available end -->
175
+
176
+ <!-- prompt-template start -->
177
+ ## Prompt template: ChatML
178
+
179
+ ```
180
+ <|im_start|>system
181
+ {system_message}<|im_end|>
182
+ <|im_start|>user
183
+ {prompt}<|im_end|>
184
+ <|im_start|>assistant
185
+
186
+ ```
187
+
188
+ <!-- prompt-template end -->
189
+
190
+
191
+ <!-- README_AWQ.md-provided-files start -->
192
+ ## Provided files, and AWQ parameters
193
+
194
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
195
+
196
+ Models are released as sharded safetensors files.
197
+
198
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
199
+ | ------ | ---- | -- | ----------- | ------- | ---- |
200
+ | [main](https://huggingface.co/TheBloke/juanako-7B-UNA-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
201
+
202
+ <!-- README_AWQ.md-provided-files end -->
203
+
204
+ <!-- README_AWQ.md-text-generation-webui start -->
205
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
206
+
207
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
208
+
209
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
210
+
211
+ 1. Click the **Model tab**.
212
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/juanako-7B-UNA-AWQ`.
213
+ 3. Click **Download**.
214
+ 4. The model will start downloading. Once it's finished it will say "Done".
215
+ 5. In the top left, click the refresh icon next to **Model**.
216
+ 6. In the **Model** dropdown, choose the model you just downloaded: `juanako-7B-UNA-AWQ`
217
+ 7. Select **Loader: AutoAWQ**.
218
+ 8. Click Load, and the model will load and is now ready for use.
219
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
220
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
221
+ <!-- README_AWQ.md-text-generation-webui end -->
222
+
223
+ <!-- README_AWQ.md-use-from-vllm start -->
224
+ ## Multi-user inference server: vLLM
225
+
226
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
227
+
228
+ - Please ensure you are using vLLM version 0.2 or later.
229
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
230
+
231
+ For example:
232
+
233
+ ```shell
234
+ python3 -m vllm.entrypoints.api_server --model TheBloke/juanako-7B-UNA-AWQ --quantization awq --dtype auto
235
+ ```
236
+
237
+ - When using vLLM from Python code, again set `quantization=awq`.
238
+
239
+ For example:
240
+
241
+ ```python
242
+ from vllm import LLM, SamplingParams
243
+
244
+ prompts = [
245
+ "Tell me about AI",
246
+ "Write a story about llamas",
247
+ "What is 291 - 150?",
248
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
249
+ ]
250
+ prompt_template=f'''<|im_start|>system
251
+ {system_message}<|im_end|>
252
+ <|im_start|>user
253
+ {prompt}<|im_end|>
254
+ <|im_start|>assistant
255
+ '''
256
+
257
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
258
+
259
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
260
+
261
+ llm = LLM(model="TheBloke/juanako-7B-UNA-AWQ", quantization="awq", dtype="auto")
262
+
263
+ outputs = llm.generate(prompts, sampling_params)
264
+
265
+ # Print the outputs.
266
+ for output in outputs:
267
+ prompt = output.prompt
268
+ generated_text = output.outputs[0].text
269
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
270
+ ```
271
+ <!-- README_AWQ.md-use-from-vllm start -->
272
+
273
+ <!-- README_AWQ.md-use-from-tgi start -->
274
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
275
+
276
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
277
+
278
+ Example Docker parameters:
279
+
280
+ ```shell
281
+ --model-id TheBloke/juanako-7B-UNA-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
282
+ ```
283
+
284
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
285
+
286
+ ```shell
287
+ pip3 install huggingface-hub
288
+ ```
289
+
290
+ ```python
291
+ from huggingface_hub import InferenceClient
292
+
293
+ endpoint_url = "https://your-endpoint-url-here"
294
+
295
+ prompt = "Tell me about AI"
296
+ prompt_template=f'''<|im_start|>system
297
+ {system_message}<|im_end|>
298
+ <|im_start|>user
299
+ {prompt}<|im_end|>
300
+ <|im_start|>assistant
301
+ '''
302
+
303
+ client = InferenceClient(endpoint_url)
304
+ response = client.text_generation(prompt,
305
+ max_new_tokens=128,
306
+ do_sample=True,
307
+ temperature=0.7,
308
+ top_p=0.95,
309
+ top_k=40,
310
+ repetition_penalty=1.1)
311
+
312
+ print(f"Model output: ", response)
313
+ ```
314
+ <!-- README_AWQ.md-use-from-tgi end -->
315
+
316
+ <!-- README_AWQ.md-use-from-python start -->
317
+ ## Inference from Python code using Transformers
318
+
319
+ ### Install the necessary packages
320
+
321
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
322
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
323
+
324
+ ```shell
325
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
326
+ ```
327
+
328
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
329
+
330
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
331
+
332
+ ```shell
333
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
334
+ ```
335
+
336
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
337
+
338
+ ```shell
339
+ pip3 uninstall -y autoawq
340
+ git clone https://github.com/casper-hansen/AutoAWQ
341
+ cd AutoAWQ
342
+ pip3 install .
343
+ ```
344
+
345
+ ### Transformers example code (requires Transformers 4.35.0 and later)
346
+
347
+ ```python
348
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
349
+
350
+ model_name_or_path = "TheBloke/juanako-7B-UNA-AWQ"
351
+
352
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
353
+ model = AutoModelForCausalLM.from_pretrained(
354
+ model_name_or_path,
355
+ low_cpu_mem_usage=True,
356
+ device_map="cuda:0"
357
+ )
358
+
359
+ # Using the text streamer to stream output one token at a time
360
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
361
+
362
+ prompt = "Tell me about AI"
363
+ prompt_template=f'''<|im_start|>system
364
+ {system_message}<|im_end|>
365
+ <|im_start|>user
366
+ {prompt}<|im_end|>
367
+ <|im_start|>assistant
368
+ '''
369
+
370
+ # Convert prompt to tokens
371
+ tokens = tokenizer(
372
+ prompt_template,
373
+ return_tensors='pt'
374
+ ).input_ids.cuda()
375
+
376
+ generation_params = {
377
+ "do_sample": True,
378
+ "temperature": 0.7,
379
+ "top_p": 0.95,
380
+ "top_k": 40,
381
+ "max_new_tokens": 512,
382
+ "repetition_penalty": 1.1
383
+ }
384
+
385
+ # Generate streamed output, visible one token at a time
386
+ generation_output = model.generate(
387
+ tokens,
388
+ streamer=streamer,
389
+ **generation_params
390
+ )
391
+
392
+ # Generation without a streamer, which will include the prompt in the output
393
+ generation_output = model.generate(
394
+ tokens,
395
+ **generation_params
396
+ )
397
+
398
+ # Get the tokens from the output, decode them, print them
399
+ token_output = generation_output[0]
400
+ text_output = tokenizer.decode(token_output)
401
+ print("model.generate output: ", text_output)
402
+
403
+ # Inference is also possible via Transformers' pipeline
404
+ from transformers import pipeline
405
+
406
+ pipe = pipeline(
407
+ "text-generation",
408
+ model=model,
409
+ tokenizer=tokenizer,
410
+ **generation_params
411
+ )
412
+
413
+ pipe_output = pipe(prompt_template)[0]['generated_text']
414
+ print("pipeline output: ", pipe_output)
415
+
416
+ ```
417
+ <!-- README_AWQ.md-use-from-python end -->
418
+
419
+ <!-- README_AWQ.md-compatibility start -->
420
+ ## Compatibility
421
+
422
+ The files provided are tested to work with:
423
+
424
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
425
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
426
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
427
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
428
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
429
+
430
+ <!-- README_AWQ.md-compatibility end -->
431
+
432
+ <!-- footer start -->
433
+ <!-- 200823 -->
434
+ ## Discord
435
+
436
+ For further support, and discussions on these models and AI in general, join us at:
437
+
438
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
439
+
440
+ ## Thanks, and how to contribute
441
+
442
+ Thanks to the [chirper.ai](https://chirper.ai) team!
443
+
444
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
445
+
446
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
447
+
448
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
449
+
450
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
451
+
452
+ * Patreon: https://patreon.com/TheBlokeAI
453
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
454
+
455
+ **Special thanks to**: Aemon Algiz.
456
+
457
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
458
+
459
+
460
+ Thank you to all my generous patrons and donaters!
461
+
462
+ And thank you again to a16z for their generous grant.
463
+
464
+ <!-- footer end -->
465
+
466
+ # Original model card: FBL's Juanako 7B UNA
467
+
468
+
469
+ # juanako-7b-UNA (Uniform Neural Alignment)
470
+
471
+ This model is a fine-tuned version of [fblgit/juanako-7b-UNA-v2-phase-1](https://huggingface.co/fblgit/juanako-7b-UNA-v2-phase-1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
472
+ It outperforms in many aspects most of the current Mistral based models and is the **latest and most powerful juanako version as of now**.
473
+
474
+ ## Scores
475
+
476
+ The official HuggingFace results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/fblgit/juanako-7b-UNA/results_2023-11-28T08-33-33.965228.json)
477
+
478
+ | Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) |
479
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- |
480
+ |[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50.32 | 59.58 | 83.31 | 64.16 | 42.15 | 78.37 | 18.12 | 6.14 |
481
+ | [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) | 59.0 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | 43.84 |
482
+ | [fblgit/juanako-7b-UNA](https://huggingface.co/fblgit/juanako-7b-UNA) | **59.91** | **68.17** | **85.34** | 62.47 | **65.13** | **78.85** | **20.7** | 38.74 |
483
+
484
+ It scores: **59.91** according HuggingFace LLM Leaderboard.
485
+ It scores: **65.1** with `big-refactor` branch of lm-eval-harness
486
+
487
+ Author [Xavier M.](mailto:xavi@juanako.ai) @fblgit
488
+
489
+ ## Model description
490
+
491
+ juanako uses UNA, Uniform Neural Alignment. A training technique that ease alignment between transformer layers yet to be published.
492
+
493
+ ### Prompts
494
+ The following prompts showed positive results, it may depend the task and needs further experimentation but this should work for starters:
495
+ ```
496
+ <|im_start|>system
497
+ - You are a helpful assistant chatbot trained by MosaicML.
498
+ - You answer questions.
499
+ - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
500
+ - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
501
+ <|im_start|>user
502
+ Explain QKV<|im_end|>
503
+ <|im_start|>assistant
504
+ ```
505
+ ```
506
+ ### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!
507
+
508
+ ### Human: Explain QKV
509
+ ### Assistant:
510
+ ```
511
+ ```
512
+ [Round <|round|>]
513
+ 问:Explain QKV
514
+ 答:
515
+ ```
516
+ ```
517
+ [Round <|round|>]
518
+ Question:Explain QKV
519
+ Answer:
520
+ ```
521
+ ```
522
+ Question:Explain QKV
523
+ Answer:
524
+ ```
525
+
526
+ ## Evaluations (lm-eval big-refactor branch)
527
+
528
+ ### TruthfulQA 0-Shot
529
+ ```
530
+ | Tasks |Version|Filter|Metric|Value | |Stderr|
531
+ |--------------|-------|------|------|-----:|---|-----:|
532
+ |truthfulqa_mc2|Yaml |none |acc |0.6549|± |0.0153|
533
+ ```
534
+ ### ARC 25-Shot
535
+ ```
536
+ | Tasks |Version|Filter| Metric |Value | |Stderr|
537
+ |-------------|-------|------|--------|-----:|---|-----:|
538
+ |arc_challenge|Yaml |none |acc |0.6476|± |0.0140|
539
+ | | |none |acc_norm|0.6809|± |0.0136|
540
+ ```
541
+ ### HellaSwag 10-Shot
542
+ ```
543
+ | Tasks |Version|Filter| Metric |Value | |Stderr|
544
+ |---------|-------|------|--------|-----:|---|-----:|
545
+ |hellaswag|Yaml |none |acc |0.6703|± |0.0047|
546
+ | | |none |acc_norm|0.8520|± |0.0035|
547
+ ```
548
+ ### GSM8k 5-Shot
549
+ ```
550
+ |Tasks|Version| Filter | Metric |Value | |Stderr|
551
+ |-----|-------|----------|-----------|-----:|---|-----:|
552
+ |gsm8k|Yaml |get-answer|exact_match|0.4898|± |0.0138|
553
+ ```
554
+ ### GPT Evaluations 0-Shot
555
+ ```
556
+ | Tasks |Version|Filter| Metric |Value | |Stderr|
557
+ |--------------|-------|------|----------|-----:|---|-----:|
558
+ |boolq |Yaml |none |acc |0.8703|± |0.0059|
559
+ |lambada_openai|Yaml |none |perplexity|3.2598|± |0.0705|
560
+ | | |none |acc |0.7336|± |0.0062|
561
+ |piqa |Yaml |none |acc |0.8254|± |0.0089|
562
+ | | |none |acc_norm |0.8292|± |0.0088|
563
+ |sciq |Yaml |none |acc |0.9580|± |0.0063|
564
+ | | |none |acc_norm |0.9130|± |0.0089|
565
+ ```
566
+ ### MathQA 0-Shot
567
+ ```
568
+ |Tasks |Version|Filter| Metric |Value | |Stderr|
569
+ |------|-------|------|--------|-----:|---|-----:|
570
+ |mathqa|Yaml |none |acc |0.3752|± |0.0089|
571
+ | | |none |acc_norm|0.3772|± |0.0089|
572
+ ```
573
+ ### PiQa 1-Shot
574
+ ```
575
+ |Tasks|Version|Filter| Metric |Value | |Stderr|
576
+ |-----|-------|------|--------|-----:|---|-----:|
577
+ |piqa |Yaml |none |acc |0.8308|± |0.0087|
578
+ | | |none |acc_norm|0.8357|± |0.0086|
579
+ ```
580
+ ### Winogrande 5-Shot
581
+ ```
582
+ | Tasks |Version|Filter|Metric|Value| |Stderr|
583
+ |----------|-------|------|------|----:|---|-----:|
584
+ |winogrande|Yaml |none |acc |0.768|± |0.0119|
585
+ ```
586
+ ### PubMedQA 0-Shot
587
+ ```
588
+ | Tasks |Version|Filter|Metric|Value| |Stderr|
589
+ |--------|-------|------|------|----:|---|-----:|
590
+ |pubmedqa|Yaml |none |acc | 0.76|± |0.0191|
591
+ ```
592
+ ### RACE 1-Shot
593
+ ```
594
+ |Tasks|Version|Filter|Metric|Value | |Stderr|
595
+ |-----|-------|------|------|-----:|---|-----:|
596
+ |race |Yaml |none |acc |0.5282|± |0.0154|
597
+ ```
598
+ ### MMLU 5-Shot (8-Bit)
599
+ ```
600
+ | Groups |Version|Filter|Metric|Value | |Stderr|
601
+ |------------------|-------|------|------|-----:|---|-----:|
602
+ |mmlu |N/A |none |acc |0.6137|± |0.1243|
603
+ | - humanities |N/A |none |acc |0.5671|± |0.1101|
604
+ | - other |N/A |none |acc |0.6859|± |0.1164|
605
+ | - social_sciences|N/A |none |acc |0.7195|± |0.0713|
606
+ | - stem |N/A |none |acc |0.5087|± |0.1297|
607
+ ```
608
+ ### DROP 3-Shot (8-Bit) (Instruct-Eval)
609
+ ```
610
+ {'score': 0.49801113762927607}
611
+ {'drop': 49.8}
612
+ drop: 49.8
613
+ ```
614
+
615
+ ### CRASS 0-Shot (Instruct-Eval)
616
+ ```
617
+ {'score': 0.8357664233576643}
618
+ {'crass': 83.58}
619
+ crass: 83.58
620
+ ```
621
+
622
+ ## Training Details
623
+
624
+ ### Training hyperparameters
625
+
626
+ The following hyperparameters were used during training:
627
+ - learning_rate: 0.0001
628
+ - train_batch_size: 1
629
+ - eval_batch_size: 1
630
+ - seed: 42
631
+ - distributed_type: multi-GPU
632
+ - num_devices: 14
633
+ - gradient_accumulation_steps: 16
634
+ - total_train_batch_size: 224
635
+ - total_eval_batch_size: 14
636
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
637
+ - lr_scheduler_type: linear
638
+ - lr_scheduler_warmup_ratio: 0.01
639
+ - num_epochs: 1
640
+
641
+ ### Training results
642
+
643
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
644
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
645
+ | 0.4795 | 0.2 | 56 | 0.4958 | -1.3684 | -2.6385 | 0.7552 | 1.2701 | -265.3887 | -241.2612 | -2.2572 | -2.4922 |
646
+ | 0.4642 | 0.4 | 112 | 0.4859 | -1.0380 | -1.9769 | 0.7273 | 0.9389 | -258.7718 | -237.9569 | -2.2414 | -2.4751 |
647
+ | 0.4758 | 0.61 | 168 | 0.4808 | -1.2594 | -2.3704 | 0.7343 | 1.1110 | -262.7074 | -240.1708 | -2.2305 | -2.4633 |
648
+ | 0.4549 | 0.81 | 224 | 0.4768 | -1.1906 | -2.3201 | 0.7552 | 1.1295 | -262.2044 | -239.4827 | -2.2284 | -2.4610 |
649
+
650
+
651
+ ### Framework versions
652
+
653
+ - Transformers 4.35.0-UNA
654
+ - Pytorch 2.1.0
655
+ - Datasets 2.14.6
656
+ - Tokenizers 0.14.1
657
+
658
+ ## Citations
659
+ If you find juanako useful please:
660
+
661
+ ```
662
+ @misc{juanako7buna,
663
+ title={Juanako: Uniform Neural Alignment},
664
+ author={Xavier Murias},
665
+ year={2023},
666
+ publisher = {HuggingFace},
667
+ journal = {HuggingFace repository},
668
+ howpublished = {\url{https://huggingface.co/fblgit/juanako-7b-UNA}},
669
+ }
670
+ ```
671
+
672
+ Thanks to all the brilliant humans behind the creation of AI, here some of the ones that we find relevant to our research. If you feel a citation is missing, please contact.
673
+ ```
674
+ @misc{lin2021truthfulqa,
675
+ title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
676
+ author={Stephanie Lin and Jacob Hilton and Owain Evans},
677
+ year={2021},
678
+ eprint={2109.07958},
679
+ archivePrefix={arXiv},
680
+ primaryClass={cs.CL}
681
+ }
682
+ @misc{tunstall2023zephyr,
683
+ title={Zephyr: Direct Distillation of LM Alignment},
684
+ author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
685
+ year={2023},
686
+ eprint={2310.16944},
687
+ archivePrefix={arXiv},
688
+ primaryClass={cs.LG}
689
+ }
690
+ @inproceedings{Bisk2020,
691
+ author = {Yonatan Bisk and Rowan Zellers and
692
+ Ronan Le Bras and Jianfeng Gao
693
+ and Yejin Choi},
694
+ title = {PIQA: Reasoning about Physical Commonsense in
695
+ Natural Language},
696
+ booktitle = {Thirty-Fourth AAAI Conference on
697
+ Artificial Intelligence},
698
+ year = {2020},
699
+ }
700
+ @software{eval-harness,
701
+ author = {Gao, Leo and
702
+ Tow, Jonathan and
703
+ Biderman, Stella and
704
+ Black, Sid and
705
+ DiPofi, Anthony and
706
+ Foster, Charles and
707
+ Golding, Laurence and
708
+ Hsu, Jeffrey and
709
+ McDonell, Kyle and
710
+ Muennighoff, Niklas and
711
+ Phang, Jason and
712
+ Reynolds, Laria and
713
+ Tang, Eric and
714
+ Thite, Anish and
715
+ Wang, Ben and
716
+ Wang, Kevin and
717
+ Zou, Andy},
718
+ title = {A framework for few-shot language model evaluation},
719
+ month = sep,
720
+ year = 2021,
721
+ publisher = {Zenodo},
722
+ version = {v0.0.1},
723
+ doi = {10.5281/zenodo.5371628},
724
+ url = {https://doi.org/10.5281/zenodo.5371628}
725
+ }
726
+ @misc{rafailov2023direct,
727
+ title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model},
728
+ author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
729
+ year={2023},
730
+ eprint={2305.18290},
731
+ archivePrefix={arXiv},
732
+ }
733
+ ```