TheBloke commited on
Commit
550b449
1 Parent(s): 5d9ec1e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +479 -0
README.md ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: cognitivecomputations/dolphin-2_6-phi-2
3
+ datasets:
4
+ - ehartford/dolphin
5
+ - jondurbin/airoboros-2.2.1
6
+ - ehartford/dolphin-coder
7
+ - teknium/openhermes
8
+ - ise-uiuc/Magicoder-OSS-Instruct-75K
9
+ - ise-uiuc/Magicoder-Evol-Instruct-110K
10
+ - LDJnr/Capybara
11
+ inference: false
12
+ language:
13
+ - en
14
+ license: other
15
+ license_link: LICENSE
16
+ license_name: microsoft-research-license
17
+ model_creator: Cognitive Computations
18
+ model_name: Dolphin 2.6 Phi 2
19
+ model_type: phi-msft
20
+ prompt_template: '<|im_start|>system
21
+
22
+ {system_message}<|im_end|>
23
+
24
+ <|im_start|>user
25
+
26
+ {prompt}<|im_end|>
27
+
28
+ <|im_start|>assistant
29
+
30
+ '
31
+ quantized_by: TheBloke
32
+ ---
33
+ <!-- markdownlint-disable MD041 -->
34
+
35
+ <!-- header start -->
36
+ <!-- 200823 -->
37
+ <div style="width: auto; margin-left: auto; margin-right: auto">
38
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
39
+ </div>
40
+ <div style="display: flex; justify-content: space-between; width: 100%;">
41
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
43
+ </div>
44
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
45
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
46
+ </div>
47
+ </div>
48
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
49
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
50
+ <!-- header end -->
51
+
52
+ # Dolphin 2.6 Phi 2 - GPTQ
53
+ - Model creator: [Cognitive Computations](https://huggingface.co/cognitivecomputations)
54
+ - Original model: [Dolphin 2.6 Phi 2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2)
55
+
56
+ <!-- description start -->
57
+ # Description
58
+
59
+ This repo contains GPTQ model files for [Cognitive Computations's Dolphin 2.6 Phi 2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2).
60
+
61
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
62
+
63
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
64
+
65
+ <!-- description end -->
66
+ <!-- repositories-available start -->
67
+ ## Repositories available
68
+
69
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ)
70
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GGUF)
71
+ * [Cognitive Computations's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2)
72
+ <!-- repositories-available end -->
73
+
74
+ <!-- prompt-template start -->
75
+ ## Prompt template: ChatML
76
+
77
+ ```
78
+ <|im_start|>system
79
+ {system_message}<|im_end|>
80
+ <|im_start|>user
81
+ {prompt}<|im_end|>
82
+ <|im_start|>assistant
83
+
84
+ ```
85
+
86
+ <!-- prompt-template end -->
87
+
88
+
89
+
90
+ <!-- README_GPTQ.md-compatible clients start -->
91
+ ## Known compatible clients / servers
92
+
93
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
94
+
95
+ These GPTQ models are known to work in the following inference servers/webuis.
96
+
97
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
98
+ - [KoboldAI United](https://github.com/henk717/koboldai)
99
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
100
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
101
+
102
+ This may not be a complete list; if you know of others, please let me know!
103
+ <!-- README_GPTQ.md-compatible clients end -->
104
+
105
+ <!-- README_GPTQ.md-provided-files start -->
106
+ ## Provided files, and GPTQ parameters
107
+
108
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
109
+
110
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
111
+
112
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
113
+
114
+ <details>
115
+ <summary>Explanation of GPTQ parameters</summary>
116
+
117
+ - Bits: The bit size of the quantised model.
118
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
119
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
120
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
121
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
122
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
123
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
124
+
125
+ </details>
126
+
127
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
128
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
129
+ | [main](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 1.84 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
130
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 1.98 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
131
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 3.05 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
132
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 3.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
133
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 3.28 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
134
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 1.89 GB | No | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
135
+
136
+ <!-- README_GPTQ.md-provided-files end -->
137
+
138
+ <!-- README_GPTQ.md-download-from-branches start -->
139
+ ## How to download, including from branches
140
+
141
+ ### In text-generation-webui
142
+
143
+ To download from the `main` branch, enter `TheBloke/dolphin-2_6-phi-2-GPTQ` in the "Download model" box.
144
+
145
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/dolphin-2_6-phi-2-GPTQ:gptq-4bit-32g-actorder_True`
146
+
147
+ ### From the command line
148
+
149
+ I recommend using the `huggingface-hub` Python library:
150
+
151
+ ```shell
152
+ pip3 install huggingface-hub
153
+ ```
154
+
155
+ To download the `main` branch to a folder called `dolphin-2_6-phi-2-GPTQ`:
156
+
157
+ ```shell
158
+ mkdir dolphin-2_6-phi-2-GPTQ
159
+ huggingface-cli download TheBloke/dolphin-2_6-phi-2-GPTQ --local-dir dolphin-2_6-phi-2-GPTQ --local-dir-use-symlinks False
160
+ ```
161
+
162
+ To download from a different branch, add the `--revision` parameter:
163
+
164
+ ```shell
165
+ mkdir dolphin-2_6-phi-2-GPTQ
166
+ huggingface-cli download TheBloke/dolphin-2_6-phi-2-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir dolphin-2_6-phi-2-GPTQ --local-dir-use-symlinks False
167
+ ```
168
+
169
+ <details>
170
+ <summary>More advanced huggingface-cli download usage</summary>
171
+
172
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
173
+
174
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
175
+
176
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
177
+
178
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
179
+
180
+ ```shell
181
+ pip3 install hf_transfer
182
+ ```
183
+
184
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
185
+
186
+ ```shell
187
+ mkdir dolphin-2_6-phi-2-GPTQ
188
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/dolphin-2_6-phi-2-GPTQ --local-dir dolphin-2_6-phi-2-GPTQ --local-dir-use-symlinks False
189
+ ```
190
+
191
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
192
+ </details>
193
+
194
+ ### With `git` (**not** recommended)
195
+
196
+ To clone a specific branch with `git`, use a command like this:
197
+
198
+ ```shell
199
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/dolphin-2_6-phi-2-GPTQ
200
+ ```
201
+
202
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
203
+
204
+ <!-- README_GPTQ.md-download-from-branches end -->
205
+ <!-- README_GPTQ.md-text-generation-webui start -->
206
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
207
+
208
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
209
+
210
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
211
+
212
+ 1. Click the **Model tab**.
213
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/dolphin-2_6-phi-2-GPTQ`.
214
+
215
+ - To download from a specific branch, enter for example `TheBloke/dolphin-2_6-phi-2-GPTQ:gptq-4bit-32g-actorder_True`
216
+ - see Provided Files above for the list of branches for each option.
217
+
218
+ 3. Click **Download**.
219
+ 4. The model will start downloading. Once it's finished it will say "Done".
220
+ 5. In the top left, click the refresh icon next to **Model**.
221
+ 6. In the **Model** dropdown, choose the model you just downloaded: `dolphin-2_6-phi-2-GPTQ`
222
+ 7. The model will automatically load, and is now ready for use!
223
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
224
+
225
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
226
+
227
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
228
+
229
+ <!-- README_GPTQ.md-text-generation-webui end -->
230
+
231
+ <!-- README_GPTQ.md-use-from-tgi start -->
232
+ ## Serving this model from Text Generation Inference (TGI)
233
+
234
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
235
+
236
+ Example Docker parameters:
237
+
238
+ ```shell
239
+ --model-id TheBloke/dolphin-2_6-phi-2-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
240
+ ```
241
+
242
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
243
+
244
+ ```shell
245
+ pip3 install huggingface-hub
246
+ ```
247
+
248
+ ```python
249
+ from huggingface_hub import InferenceClient
250
+
251
+ endpoint_url = "https://your-endpoint-url-here"
252
+
253
+ prompt = "Tell me about AI"
254
+ prompt_template=f'''<|im_start|>system
255
+ {system_message}<|im_end|>
256
+ <|im_start|>user
257
+ {prompt}<|im_end|>
258
+ <|im_start|>assistant
259
+ '''
260
+
261
+ client = InferenceClient(endpoint_url)
262
+ response = client.text_generation(
263
+ prompt_template,
264
+ max_new_tokens=128,
265
+ do_sample=True,
266
+ temperature=0.7,
267
+ top_p=0.95,
268
+ top_k=40,
269
+ repetition_penalty=1.1
270
+ )
271
+
272
+ print(f"Model output: {response}")
273
+ ```
274
+ <!-- README_GPTQ.md-use-from-tgi end -->
275
+ <!-- README_GPTQ.md-use-from-python start -->
276
+ ## Python code example: inference from this GPTQ model
277
+
278
+ ### Install the necessary packages
279
+
280
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
281
+
282
+ ```shell
283
+ pip3 install --upgrade transformers optimum
284
+ # If using PyTorch 2.1 + CUDA 12.x:
285
+ pip3 install --upgrade auto-gptq
286
+ # or, if using PyTorch 2.1 + CUDA 11.x:
287
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
288
+ ```
289
+
290
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
291
+
292
+ ```shell
293
+ pip3 uninstall -y auto-gptq
294
+ git clone https://github.com/PanQiWei/AutoGPTQ
295
+ cd AutoGPTQ
296
+ git checkout v0.5.1
297
+ pip3 install .
298
+ ```
299
+
300
+ ### Example Python code
301
+
302
+ ```python
303
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
304
+
305
+ model_name_or_path = "TheBloke/dolphin-2_6-phi-2-GPTQ"
306
+ # To use a different branch, change revision
307
+ # For example: revision="gptq-4bit-32g-actorder_True"
308
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
309
+ device_map="auto",
310
+ trust_remote_code=True,
311
+ revision="main")
312
+
313
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
314
+
315
+ prompt = "Write a story about llamas"
316
+ system_message = "You are a story writing assistant"
317
+ prompt_template=f'''<|im_start|>system
318
+ {system_message}<|im_end|>
319
+ <|im_start|>user
320
+ {prompt}<|im_end|>
321
+ <|im_start|>assistant
322
+ '''
323
+
324
+ print("\n\n*** Generate:")
325
+
326
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
327
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
328
+ print(tokenizer.decode(output[0]))
329
+
330
+ # Inference can also be done using transformers' pipeline
331
+
332
+ print("*** Pipeline:")
333
+ pipe = pipeline(
334
+ "text-generation",
335
+ model=model,
336
+ tokenizer=tokenizer,
337
+ max_new_tokens=512,
338
+ do_sample=True,
339
+ temperature=0.7,
340
+ top_p=0.95,
341
+ top_k=40,
342
+ repetition_penalty=1.1
343
+ )
344
+
345
+ print(pipe(prompt_template)[0]['generated_text'])
346
+ ```
347
+ <!-- README_GPTQ.md-use-from-python end -->
348
+
349
+ <!-- README_GPTQ.md-compatibility start -->
350
+ ## Compatibility
351
+
352
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
353
+
354
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
355
+
356
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
357
+ <!-- README_GPTQ.md-compatibility end -->
358
+
359
+ <!-- footer start -->
360
+ <!-- 200823 -->
361
+ ## Discord
362
+
363
+ For further support, and discussions on these models and AI in general, join us at:
364
+
365
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
366
+
367
+ ## Thanks, and how to contribute
368
+
369
+ Thanks to the [chirper.ai](https://chirper.ai) team!
370
+
371
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
372
+
373
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
374
+
375
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
376
+
377
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
378
+
379
+ * Patreon: https://patreon.com/TheBlokeAI
380
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
381
+
382
+ **Special thanks to**: Aemon Algiz.
383
+
384
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
385
+
386
+
387
+ Thank you to all my generous patrons and donaters!
388
+
389
+ And thank you again to a16z for their generous grant.
390
+
391
+ <!-- footer end -->
392
+
393
+ # Original model card: Cognitive Computations's Dolphin 2.6 Phi 2
394
+
395
+
396
+ Dolphin 2.6 Phi-2 🐬
397
+
398
+ Discord https://discord.gg/SmbBewAM
399
+
400
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />
401
+
402
+ This model's training was sponsored by [convai](https://www.convai.com/).
403
+
404
+ This model is based on [Phi-2](https://huggingface.co/microsoft/phi-2) and is governed by Microsoft's microsoft-research-license which is prohibits commercial use
405
+
406
+ trust_remote_code is required.
407
+
408
+ New in 2.6
409
+ - Fixed a training configuration issue that improved the quality a lot
410
+ - Due to popular demand, added back samantha-based empathy data
411
+ - Replaced synthia and pure-dove with Capybara
412
+
413
+ This model is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant to any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models
414
+ You are responsible for any content you create using this model. Enjoy responsibly.
415
+
416
+ ## Training
417
+ It took 2 days to train 3 epochs on 4x A100s using qLoRA and Axolotl
418
+
419
+ Prompt format:
420
+ This model uses ChatML prompt format.
421
+ ```
422
+ <|im_start|>system
423
+ You are Dolphin, a helpful AI assistant.<|im_end|>
424
+ <|im_start|>user
425
+ {prompt}<|im_end|>
426
+ <|im_start|>assistant
427
+
428
+ ```
429
+
430
+ Example:
431
+ ```
432
+ <|im_start|>system
433
+ You are an AI assistant expert at dolphin training<|im_end|>
434
+ <|im_start|>user
435
+ Please give ideas and a detailed plan about how to assemble and train an army of dolphin companions to swim me anywhere I want to go and protect me from my enemies and bring me fish to eat.<|im_end|>
436
+ <|im_start|>assistant
437
+ Assembling, training, and utilizing dolphins as your companions for transportation, protection, and fishing is no small task. However, with careful planning and execution, it can be accomplished. Here's a detailed guide on how to achieve this:
438
+
439
+ 1. **Acquiring Dolphins**: Finding dolphins isn't easy, but you could potentially find them in the wild or at aquariums. For ethical reasons, we suggest acquiring adult dolphins that have been born into captivity. They may not have had as much exposure to humans as their wild counterparts, which makes them easier to handle.
440
+
441
+ 2. **Creating a Safe Environment**: Build a large pool or enclosure where these dolphins can live comfortably while you train them. It should mimic their natural environment as closely as possible. Include elements like rocks (for resting), seaweed (for hiding), and water currents (to simulate ocean conditions).
442
+
443
+ 3. **Training Sessions**: Begin by teaching basic commands such as "come", "stay", "sit", "roll over". Use positive reinforcement methods like treats and praise to encourage good behavior. Be patient; dolphins are intelligent creatures who need time to understand what they're being asked to do.
444
+
445
+ 4. **Transportation Training**: Once your dolphins have mastered basic commands, start integrating travel into the mix. Place floating objects around the pool to represent different destinations. The goal here would be to get your dolphins to recognize these items and associate them with specific locations. Start with short trips and gradually increase the distance.
446
+
447
+ 5. **Protection Skills**: To teach them protective skills, introduce simulated threats into the pool. This might involve using inflatable obstacles or having another trained animal pretend to attack. The dolphins will learn to react appropriately to these situations.
448
+
449
+ 6. **Fishing Skills**: Teaching dolphins to catch fish involves introducing nets or toys into the pool and encouraging them to use their mouths to retrieve the object. Reward them when they successfully catch something.
450
+
451
+ 7. **Socialization**: Dolphins thrive in social environments so ensure they spend plenty of time interacting with each other during their training sessions. This can help reduce stress levels and make training more effective.
452
+
453
+ 8. **Dietary Needs**: Dolphins require a diet high in protein, fats, and minerals. Feed them fish rich in these nutrients several times per day. If necessary, consult with a marine biologist or veterinarian experienced in aquatic diets for advice.
454
+
455
+ ```
456
+
457
+ ## Gratitude
458
+ - This model was made possible by the generous sponsorship of [Convai](https://www.convai.com/).
459
+ - Huge thank you to Microsoft for training and publishing the weights of Phi-2
460
+ - Thank you to Microsoft for authoring the Orca paper and inspiring this work.
461
+ - HUGE Thank you to the dataset authors: @jondurbin, @ise-uiuc, @teknium, @LDJnr and @migtissera
462
+ - And HUGE thanks to @winglian and the Axolotl contributors for making the best training framework!
463
+ - [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
464
+ - Thank you to all the other people in the Open Source AI community who have taught me and helped me along the way.
465
+
466
+ ## Example Output
467
+
468
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/u-QpmJYgmwym0C8gorXzh.png)
469
+
470
+ ## Future Plans
471
+ Dolphin 3.0 dataset is in progress, and will include:
472
+ - enhanced general chat use-cases
473
+ - enhanced structured output
474
+ - enhanced Agent cases like Autogen, Memgpt, Functions
475
+ - enhanced role-playing
476
+
477
+ [If you would like to financially support my efforts](https://ko-fi.com/erichartford)
478
+
479
+ [swag](https://fa7113.myshopify.com/)