TheBloke commited on
Commit
62d3475
1 Parent(s): 7647f96

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +145 -75
README.md CHANGED
@@ -1,7 +1,23 @@
1
  ---
 
2
  inference: false
3
  license: other
 
 
4
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  tags:
6
  - llama
7
  - pytorch
@@ -26,152 +42,204 @@ tags:
26
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
27
  <!-- header end -->
28
 
29
- # Elinas' Chronos 33B GPTQ
 
 
30
 
31
- These files are GPTQ model files for [Elinas' Chronos 33B](https://huggingface.co/elinas/chronos-33b).
 
32
 
33
- Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
34
 
35
- These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
36
 
 
 
37
  ## Repositories available
38
 
 
39
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/chronos-33b-GPTQ)
40
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-33b-GGML)
41
- * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/elinas/chronos-33b)
 
42
 
 
43
  ## Prompt template: Alpaca
44
 
45
  ```
46
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
47
 
48
- ### Instruction: {prompt}
 
49
 
50
  ### Response:
 
51
  ```
52
 
53
- ## Provided files
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
56
 
57
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
58
 
59
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
60
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
61
- | main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
62
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
63
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
64
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
65
- | gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
66
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
67
- | gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
68
- | gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
 
 
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  ## How to download from branches
71
 
72
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/chronos-33b-GPTQ:gptq-4bit-32g-actorder_True`
73
  - With Git, you can clone a branch with:
74
  ```
75
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/chronos-33b-GPTQ`
76
  ```
77
  - In Python Transformers code, the branch is the `revision` parameter; see below.
78
-
 
79
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
80
 
81
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
82
 
83
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
84
 
85
  1. Click the **Model tab**.
86
  2. Under **Download custom model or LoRA**, enter `TheBloke/chronos-33b-GPTQ`.
87
- - To download from a specific branch, enter for example `TheBloke/chronos-33b-GPTQ:gptq-4bit-32g-actorder_True`
88
  - see Provided Files above for the list of branches for each option.
89
  3. Click **Download**.
90
- 4. The model will start downloading. Once it's finished it will say "Done"
91
  5. In the top left, click the refresh icon next to **Model**.
92
  6. In the **Model** dropdown, choose the model you just downloaded: `chronos-33b-GPTQ`
93
  7. The model will automatically load, and is now ready for use!
94
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
95
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
96
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
97
 
 
98
  ## How to use this GPTQ model from Python code
99
 
100
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
101
 
102
- `GITHUB_ACTIONS=true pip install auto-gptq`
103
 
104
- Then try the following example code:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  ```python
107
- from transformers import AutoTokenizer, pipeline, logging
108
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
109
 
110
  model_name_or_path = "TheBloke/chronos-33b-GPTQ"
111
- model_basename = "chronos-33b-GPTQ-4bit--1g.act.order"
112
-
113
- use_triton = False
 
 
 
114
 
115
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
116
 
117
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
118
- model_basename=model_basename
119
- use_safetensors=True,
120
- trust_remote_code=False,
121
- device="cuda:0",
122
- use_triton=use_triton,
123
- quantize_config=None)
124
-
125
- """
126
- To download from a specific branch, use the revision parameter, as in this example:
127
-
128
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
129
- revision="gptq-4bit-32g-actorder_True",
130
- model_basename=model_basename,
131
- use_safetensors=True,
132
- trust_remote_code=False,
133
- device="cuda:0",
134
- quantize_config=None)
135
- """
136
-
137
  prompt = "Tell me about AI"
138
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
139
 
140
- ### Instruction: {prompt}
 
141
 
142
  ### Response:
 
143
  '''
144
 
145
  print("\n\n*** Generate:")
146
 
147
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
148
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
149
  print(tokenizer.decode(output[0]))
150
 
151
  # Inference can also be done using transformers' pipeline
152
 
153
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
154
- logging.set_verbosity(logging.CRITICAL)
155
-
156
  print("*** Pipeline:")
157
  pipe = pipeline(
158
  "text-generation",
159
  model=model,
160
  tokenizer=tokenizer,
161
  max_new_tokens=512,
 
162
  temperature=0.7,
163
  top_p=0.95,
164
- repetition_penalty=1.15
 
165
  )
166
 
167
  print(pipe(prompt_template)[0]['generated_text'])
168
  ```
 
169
 
 
170
  ## Compatibility
171
 
172
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
173
 
174
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
175
 
176
  <!-- footer start -->
177
  <!-- 200823 -->
@@ -181,10 +249,12 @@ For further support, and discussions on these models and AI in general, join us
181
 
182
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
183
 
184
- ## Thanks, and how to contribute.
185
 
186
  Thanks to the [chirper.ai](https://chirper.ai) team!
187
 
 
 
188
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
189
 
190
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -196,7 +266,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
196
 
197
  **Special thanks to**: Aemon Algiz.
198
 
199
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
200
 
201
 
202
  Thank you to all my generous patrons and donaters!
@@ -228,7 +298,7 @@ Your instruction or question here.
228
  [4bit GPTQ Version provided by @TheBloke](https://huggingface.co/TheBloke/chronos-33b-GPTQ)
229
 
230
  <!--**Support My Development of New Models**
231
- <a href='https://ko-fi.com/Q5Q6MB734' target='_blank'><img height='36' style='border:0px;height:36px;'
232
  src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Support Development' /></a>-->
233
 
234
  --
@@ -311,11 +381,11 @@ Hyperparameters for the model architecture
311
  </tr>
312
  <tr>
313
  <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th>
314
- </tr>
315
  </thead>
316
- <tbody>
317
  <tr>
318
- <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T
319
  </tr>
320
  <tr>
321
  <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T
@@ -325,13 +395,13 @@ Hyperparameters for the model architecture
325
  </tr>
326
  <tr>
327
  <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T
328
- </tr>
329
  </tbody>
330
  </table>
331
 
332
  *Table 1 - Summary of LLama Model Hyperparameters*
333
 
334
- We present our results on eight standard common sense reasoning benchmarks in the table below.
335
  <table>
336
  <thead>
337
  <tr>
@@ -339,23 +409,23 @@ We present our results on eight standard common sense reasoning benchmarks in th
339
  </tr>
340
  <tr>
341
  <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th>
342
- </tr>
343
  </thead>
344
- <tbody>
345
- <tr>
346
  <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93
347
- </th>
348
  <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94
349
  </th>
350
  <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92
351
  </th>
352
- <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr>
353
  </tbody>
354
  </table>
355
  *Table 2 - Summary of LLama Model Performance on Reasoning tasks*
356
 
357
 
358
- We present our results on bias in the table below. Note that lower value is better indicating lower bias.
359
 
360
 
361
  | No | Category | FAIR LLM |
 
1
  ---
2
+ base_model: https://huggingface.co/elinas/chronos-33b
3
  inference: false
4
  license: other
5
+ model_creator: elinas
6
+ model_name: Chronos 33B
7
  model_type: llama
8
+ prompt_template: 'Below is an instruction that describes a task. Write a response
9
+ that appropriately completes the request.
10
+
11
+
12
+ ### Instruction:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Response:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
  tags:
22
  - llama
23
  - pytorch
 
42
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
  <!-- header end -->
44
 
45
+ # Chronos 33B - GPTQ
46
+ - Model creator: [elinas](https://huggingface.co/elinas)
47
+ - Original model: [Chronos 33B](https://huggingface.co/elinas/chronos-33b)
48
 
49
+ <!-- description start -->
50
+ ## Description
51
 
52
+ This repo contains GPTQ model files for [Elinas' Chronos 33B](https://huggingface.co/elinas/chronos-33b).
53
 
54
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
55
 
56
+ <!-- description end -->
57
+ <!-- repositories-available start -->
58
  ## Repositories available
59
 
60
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/chronos-33b-AWQ)
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/chronos-33b-GPTQ)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-33b-GGUF)
63
+ * [elinas's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/elinas/chronos-33b)
64
+ <!-- repositories-available end -->
65
 
66
+ <!-- prompt-template start -->
67
  ## Prompt template: Alpaca
68
 
69
  ```
70
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
71
 
72
+ ### Instruction:
73
+ {prompt}
74
 
75
  ### Response:
76
+
77
  ```
78
 
79
+ <!-- prompt-template end -->
80
+ <!-- licensing start -->
81
+ ## Licensing
82
+
83
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
84
+
85
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
86
+
87
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Elinas' Chronos 33B](https://huggingface.co/elinas/chronos-33b).
88
+ <!-- licensing end -->
89
+ <!-- README_GPTQ.md-provided-files start -->
90
+ ## Provided files and GPTQ parameters
91
 
92
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
93
 
94
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
95
 
96
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
97
+
98
+ <details>
99
+ <summary>Explanation of GPTQ parameters</summary>
100
+
101
+ - Bits: The bit size of the quantised model.
102
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
103
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
104
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
105
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
106
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
107
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
108
 
109
+ </details>
110
+
111
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
112
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
113
+ | [main](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/main) | 4 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 16.94 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
114
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 19.44 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
115
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 18.18 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
116
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 17.55 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
117
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 32.99 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
118
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 33.73 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
119
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 12.92 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
120
+ | [gptq-3bit-128g-actorder_False](https://huggingface.co/TheBloke/chronos-33b-GPTQ/tree/gptq-3bit-128g-actorder_False) | 3 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 13.51 GB | No | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
121
+
122
+ <!-- README_GPTQ.md-provided-files end -->
123
+
124
+ <!-- README_GPTQ.md-download-from-branches start -->
125
  ## How to download from branches
126
 
127
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/chronos-33b-GPTQ:main`
128
  - With Git, you can clone a branch with:
129
  ```
130
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/chronos-33b-GPTQ
131
  ```
132
  - In Python Transformers code, the branch is the `revision` parameter; see below.
133
+ <!-- README_GPTQ.md-download-from-branches end -->
134
+ <!-- README_GPTQ.md-text-generation-webui start -->
135
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
136
 
137
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
138
 
139
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
140
 
141
  1. Click the **Model tab**.
142
  2. Under **Download custom model or LoRA**, enter `TheBloke/chronos-33b-GPTQ`.
143
+ - To download from a specific branch, enter for example `TheBloke/chronos-33b-GPTQ:main`
144
  - see Provided Files above for the list of branches for each option.
145
  3. Click **Download**.
146
+ 4. The model will start downloading. Once it's finished it will say "Done".
147
  5. In the top left, click the refresh icon next to **Model**.
148
  6. In the **Model** dropdown, choose the model you just downloaded: `chronos-33b-GPTQ`
149
  7. The model will automatically load, and is now ready for use!
150
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
151
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
152
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
153
+ <!-- README_GPTQ.md-text-generation-webui end -->
154
 
155
+ <!-- README_GPTQ.md-use-from-python start -->
156
  ## How to use this GPTQ model from Python code
157
 
158
+ ### Install the necessary packages
159
 
160
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
161
 
162
+ ```shell
163
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
164
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
165
+ ```
166
+
167
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
168
+
169
+ ```shell
170
+ pip3 uninstall -y auto-gptq
171
+ git clone https://github.com/PanQiWei/AutoGPTQ
172
+ cd AutoGPTQ
173
+ pip3 install .
174
+ ```
175
+
176
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
177
+
178
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
179
+ ```shell
180
+ pip3 uninstall -y transformers
181
+ pip3 install git+https://github.com/huggingface/transformers.git
182
+ ```
183
+
184
+ ### You can then use the following code
185
 
186
  ```python
187
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
188
 
189
  model_name_or_path = "TheBloke/chronos-33b-GPTQ"
190
+ # To use a different branch, change revision
191
+ # For example: revision="main"
192
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
193
+ device_map="auto",
194
+ trust_remote_code=False,
195
+ revision="main")
196
 
197
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  prompt = "Tell me about AI"
200
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
201
 
202
+ ### Instruction:
203
+ {prompt}
204
 
205
  ### Response:
206
+
207
  '''
208
 
209
  print("\n\n*** Generate:")
210
 
211
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
212
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
213
  print(tokenizer.decode(output[0]))
214
 
215
  # Inference can also be done using transformers' pipeline
216
 
 
 
 
217
  print("*** Pipeline:")
218
  pipe = pipeline(
219
  "text-generation",
220
  model=model,
221
  tokenizer=tokenizer,
222
  max_new_tokens=512,
223
+ do_sample=True,
224
  temperature=0.7,
225
  top_p=0.95,
226
+ top_k=40,
227
+ repetition_penalty=1.1
228
  )
229
 
230
  print(pipe(prompt_template)[0]['generated_text'])
231
  ```
232
+ <!-- README_GPTQ.md-use-from-python end -->
233
 
234
+ <!-- README_GPTQ.md-compatibility start -->
235
  ## Compatibility
236
 
237
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
238
+
239
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
240
 
241
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
242
+ <!-- README_GPTQ.md-compatibility end -->
243
 
244
  <!-- footer start -->
245
  <!-- 200823 -->
 
249
 
250
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
251
 
252
+ ## Thanks, and how to contribute
253
 
254
  Thanks to the [chirper.ai](https://chirper.ai) team!
255
 
256
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
257
+
258
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
259
 
260
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
266
 
267
  **Special thanks to**: Aemon Algiz.
268
 
269
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
270
 
271
 
272
  Thank you to all my generous patrons and donaters!
 
298
  [4bit GPTQ Version provided by @TheBloke](https://huggingface.co/TheBloke/chronos-33b-GPTQ)
299
 
300
  <!--**Support My Development of New Models**
301
+ <a href='https://ko-fi.com/Q5Q6MB734' target='_blank'><img height='36' style='border:0px;height:36px;'
302
  src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Support Development' /></a>-->
303
 
304
  --
 
381
  </tr>
382
  <tr>
383
  <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th>
384
+ </tr>
385
  </thead>
386
+ <tbody>
387
  <tr>
388
+ <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T
389
  </tr>
390
  <tr>
391
  <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T
 
395
  </tr>
396
  <tr>
397
  <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T
398
+ </tr>
399
  </tbody>
400
  </table>
401
 
402
  *Table 1 - Summary of LLama Model Hyperparameters*
403
 
404
+ We present our results on eight standard common sense reasoning benchmarks in the table below.
405
  <table>
406
  <thead>
407
  <tr>
 
409
  </tr>
410
  <tr>
411
  <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th>
412
+ </tr>
413
  </thead>
414
+ <tbody>
415
+ <tr>
416
  <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93
417
+ </th>
418
  <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94
419
  </th>
420
  <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92
421
  </th>
422
+ <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr>
423
  </tbody>
424
  </table>
425
  *Table 2 - Summary of LLama Model Performance on Reasoning tasks*
426
 
427
 
428
+ We present our results on bias in the table below. Note that lower value is better indicating lower bias.
429
 
430
 
431
  | No | Category | FAIR LLM |