TheBloke commited on
Commit
a6fdb20
1 Parent(s): 545058c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -46
README.md CHANGED
@@ -11,35 +11,44 @@ tags:
11
  ---
12
 
13
  <!-- header start -->
14
- <div style="width: 100%;">
15
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
16
  </div>
17
  <div style="display: flex; justify-content: space-between; width: 100%;">
18
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
19
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
20
  </div>
21
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
22
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
23
  </div>
24
  </div>
 
 
25
  <!-- header end -->
26
 
27
  # Zarablend L2 7B - GPTQ
28
  - Model creator: [Zaraki Quem Parte](https://huggingface.co/zarakiquemparte)
29
  - Original model: [Zarablend L2 7B](https://huggingface.co/zarakiquemparte/zarablend-l2-7b)
30
 
 
31
  ## Description
32
 
33
  This repo contains GPTQ model files for [Zaraki Quem Parte's Zarablend L2 7B](https://huggingface.co/zarakiquemparte/zarablend-l2-7b).
34
 
35
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
36
 
 
 
37
  ## Repositories available
38
 
39
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ)
40
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Zarablend-L2-7B-GGML)
 
41
  * [Zaraki Quem Parte's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/zarakiquemparte/zarablend-l2-7b)
 
42
 
 
43
  ## Prompt template: Alpaca-InstructOnly
44
 
45
  ```
@@ -48,22 +57,26 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
48
  {prompt}
49
 
50
  ### Response:
 
51
  ```
52
 
 
 
 
53
  ## Provided files and GPTQ parameters
54
 
55
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
56
 
57
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
58
 
59
- All GPTQ files are made with AutoGPTQ.
60
 
61
  <details>
62
  <summary>Explanation of GPTQ parameters</summary>
63
 
64
  - Bits: The bit size of the quantised model.
65
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
66
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
67
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
68
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
69
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -80,6 +93,9 @@ All GPTQ files are made with AutoGPTQ.
80
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
81
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
82
 
 
 
 
83
  ## How to download from branches
84
 
85
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Zarablend-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -88,79 +104,79 @@ All GPTQ files are made with AutoGPTQ.
88
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ
89
  ```
90
  - In Python Transformers code, the branch is the `revision` parameter; see below.
91
-
 
92
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
93
 
94
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
95
 
96
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
97
 
98
  1. Click the **Model tab**.
99
  2. Under **Download custom model or LoRA**, enter `TheBloke/Zarablend-L2-7B-GPTQ`.
100
  - To download from a specific branch, enter for example `TheBloke/Zarablend-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
101
  - see Provided Files above for the list of branches for each option.
102
  3. Click **Download**.
103
- 4. The model will start downloading. Once it's finished it will say "Done"
104
  5. In the top left, click the refresh icon next to **Model**.
105
  6. In the **Model** dropdown, choose the model you just downloaded: `Zarablend-L2-7B-GPTQ`
106
  7. The model will automatically load, and is now ready for use!
107
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
108
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
109
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
110
 
 
111
  ## How to use this GPTQ model from Python code
112
 
113
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
114
 
115
- ```
116
- pip3 install auto-gptq
117
- ```
118
 
119
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
120
  ```
 
 
 
 
121
  pip3 uninstall -y auto-gptq
122
  git clone https://github.com/PanQiWei/AutoGPTQ
123
  cd AutoGPTQ
124
  pip3 install .
125
  ```
126
 
127
- Then try the following example code:
 
 
 
 
 
 
 
 
128
 
129
  ```python
130
- from transformers import AutoTokenizer, pipeline, logging
131
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
132
 
133
  model_name_or_path = "TheBloke/Zarablend-L2-7B-GPTQ"
134
-
135
- use_triton = False
 
 
 
 
136
 
137
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
138
 
139
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
140
- use_safetensors=True,
141
- trust_remote_code=False,
142
- device="cuda:0",
143
- use_triton=use_triton,
144
- quantize_config=None)
145
-
146
- """
147
- # To download from a specific branch, use the revision parameter, as in this example:
148
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
149
-
150
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
151
- revision="gptq-4bit-32g-actorder_True",
152
- use_safetensors=True,
153
- trust_remote_code=False,
154
- device="cuda:0",
155
- quantize_config=None)
156
- """
157
-
158
  prompt = "Tell me about AI"
159
  prompt_template=f'''### Instruction:
160
 
161
  {prompt}
162
 
163
  ### Response:
 
164
  '''
165
 
166
  print("\n\n*** Generate:")
@@ -171,9 +187,6 @@ print(tokenizer.decode(output[0]))
171
 
172
  # Inference can also be done using transformers' pipeline
173
 
174
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
175
- logging.set_verbosity(logging.CRITICAL)
176
-
177
  print("*** Pipeline:")
178
  pipe = pipeline(
179
  "text-generation",
@@ -187,14 +200,20 @@ pipe = pipeline(
187
 
188
  print(pipe(prompt_template)[0]['generated_text'])
189
  ```
 
190
 
 
191
  ## Compatibility
192
 
193
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
194
 
195
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
196
 
197
  <!-- footer start -->
 
198
  ## Discord
199
 
200
  For further support, and discussions on these models and AI in general, join us at:
@@ -216,11 +235,13 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
216
 
217
  **Special thanks to**: Aemon Algiz.
218
 
219
- **Patreon special mentions**: Ajan Kanaga, David Ziegler, Raymond Fosdick, SuperWojo, Sam, webtim, Steven Wood, knownsqashed, Tony Hughes, Junyu Yang, J, Olakabola, Dan Guido, Stephen Murray, John Villwock, vamX, William Sang, Sean Connelly, LangChain4j, Olusegun Samson, Fen Risland, Derek Yates, Karl Bernard, transmissions 11, Trenton Dambrowitz, Pieter, Preetika Verma, Swaroop Kallakuri, Andrey, Slarti, Jonathan Leane, Michael Levine, Kalila, Joseph William Delisle, Rishabh Srivastava, Deo Leter, Luke Pendergrass, Spencer Kim, Geoffrey Montalvo, Thomas Belote, Jeffrey Morgan, Mandus, ya boyyy, Matthew Berman, Magnesian, Ai Maven, senxiiz, Alps Aficionado, Luke @flexchar, Raven Klaugh, Imad Khwaja, Gabriel Puliatti, Johann-Peter Hartmann, usrbinkat, Spiking Neurons AB, Artur Olbinski, chris gileta, danny, Willem Michiel, WelcomeToTheClub, Deep Realms, alfie_i, Dave, Leonard Tan, NimbleBox.ai, Randy H, Daniel P. Andersen, Pyrater, Will Dee, Elle, Space Cruiser, Gabriel Tamborski, Asp the Wyvern, Illia Dulskyi, Nikolai Manek, Sid, Brandon Frisco, Nathan LeClaire, Edmond Seymore, Enrico Ros, Pedro Madruga, Eugene Pentland, John Detwiler, Mano Prime, Stanislav Ovsiannikov, Alex, Vitor Caleffi, K, biorpg, Michael Davis, Lone Striker, Pierre Kircher, theTransient, Fred von Graf, Sebastain Graf, Vadim, Iucharbius, Clay Pascal, Chadd, Mesiah Bishop, terasurfer, Rainer Wilmers, Alexandros Triantafyllidis, Stefan Sabev, Talal Aujan, Cory Kujawski, Viktor Bowallius, subjectnull, ReadyPlayerEmma, zynix
220
 
221
 
222
  Thank you to all my generous patrons and donaters!
223
 
 
 
224
  <!-- footer end -->
225
 
226
  # Original model card: Zaraki Quem Parte's Zarablend L2 7B
@@ -232,6 +253,10 @@ This merge of models(hermes and airoboros) was done with this [script](https://g
232
 
233
  This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py)
234
 
 
 
 
 
235
  Merge illustration:
236
 
237
  ![illustration](zarablend-merge-illustration.png)
 
11
  ---
12
 
13
  <!-- header start -->
14
+ <!-- 200823 -->
15
+ <div style="width: auto; margin-left: auto; margin-right: auto">
16
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
17
  </div>
18
  <div style="display: flex; justify-content: space-between; width: 100%;">
19
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
20
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
21
  </div>
22
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
23
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
24
  </div>
25
  </div>
26
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
27
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
28
  <!-- header end -->
29
 
30
  # Zarablend L2 7B - GPTQ
31
  - Model creator: [Zaraki Quem Parte](https://huggingface.co/zarakiquemparte)
32
  - Original model: [Zarablend L2 7B](https://huggingface.co/zarakiquemparte/zarablend-l2-7b)
33
 
34
+ <!-- description start -->
35
  ## Description
36
 
37
  This repo contains GPTQ model files for [Zaraki Quem Parte's Zarablend L2 7B](https://huggingface.co/zarakiquemparte/zarablend-l2-7b).
38
 
39
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
40
 
41
+ <!-- description end -->
42
+ <!-- repositories-available start -->
43
  ## Repositories available
44
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ)
46
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Zarablend-L2-7B-GGUF)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Zarablend-L2-7B-GGML)
48
  * [Zaraki Quem Parte's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/zarakiquemparte/zarablend-l2-7b)
49
+ <!-- repositories-available end -->
50
 
51
+ <!-- prompt-template start -->
52
  ## Prompt template: Alpaca-InstructOnly
53
 
54
  ```
 
57
  {prompt}
58
 
59
  ### Response:
60
+
61
  ```
62
 
63
+ <!-- prompt-template end -->
64
+
65
+ <!-- README_GPTQ.md-provided-files start -->
66
  ## Provided files and GPTQ parameters
67
 
68
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
69
 
70
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
71
 
72
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
73
 
74
  <details>
75
  <summary>Explanation of GPTQ parameters</summary>
76
 
77
  - Bits: The bit size of the quantised model.
78
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
79
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
80
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
81
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
82
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
93
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
94
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
95
 
96
+ <!-- README_GPTQ.md-provided-files end -->
97
+
98
+ <!-- README_GPTQ.md-download-from-branches start -->
99
  ## How to download from branches
100
 
101
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Zarablend-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
 
104
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ
105
  ```
106
  - In Python Transformers code, the branch is the `revision` parameter; see below.
107
+ <!-- README_GPTQ.md-download-from-branches end -->
108
+ <!-- README_GPTQ.md-text-generation-webui start -->
109
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
110
 
111
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
112
 
113
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
114
 
115
  1. Click the **Model tab**.
116
  2. Under **Download custom model or LoRA**, enter `TheBloke/Zarablend-L2-7B-GPTQ`.
117
  - To download from a specific branch, enter for example `TheBloke/Zarablend-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
118
  - see Provided Files above for the list of branches for each option.
119
  3. Click **Download**.
120
+ 4. The model will start downloading. Once it's finished it will say "Done".
121
  5. In the top left, click the refresh icon next to **Model**.
122
  6. In the **Model** dropdown, choose the model you just downloaded: `Zarablend-L2-7B-GPTQ`
123
  7. The model will automatically load, and is now ready for use!
124
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
125
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
126
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
127
+ <!-- README_GPTQ.md-text-generation-webui end -->
128
 
129
+ <!-- README_GPTQ.md-use-from-python start -->
130
  ## How to use this GPTQ model from Python code
131
 
132
+ ### Install the necessary packages
133
 
134
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
135
 
136
+ ```shell
137
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
138
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
139
  ```
140
+
141
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
142
+
143
+ ```shell
144
  pip3 uninstall -y auto-gptq
145
  git clone https://github.com/PanQiWei/AutoGPTQ
146
  cd AutoGPTQ
147
  pip3 install .
148
  ```
149
 
150
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
151
+
152
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
153
+ ```shell
154
+ pip3 uninstall -y transformers
155
+ pip3 install git+https://github.com/huggingface/transformers.git
156
+ ```
157
+
158
+ ### You can then use the following code
159
 
160
  ```python
161
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
162
 
163
  model_name_or_path = "TheBloke/Zarablend-L2-7B-GPTQ"
164
+ # To use a different branch, change revision
165
+ # For example: revision="gptq-4bit-32g-actorder_True"
166
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
167
+ torch_dtype=torch.float16,
168
+ device_map="auto",
169
+ revision="main")
170
 
171
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
  prompt = "Tell me about AI"
174
  prompt_template=f'''### Instruction:
175
 
176
  {prompt}
177
 
178
  ### Response:
179
+
180
  '''
181
 
182
  print("\n\n*** Generate:")
 
187
 
188
  # Inference can also be done using transformers' pipeline
189
 
 
 
 
190
  print("*** Pipeline:")
191
  pipe = pipeline(
192
  "text-generation",
 
200
 
201
  print(pipe(prompt_template)[0]['generated_text'])
202
  ```
203
+ <!-- README_GPTQ.md-use-from-python end -->
204
 
205
+ <!-- README_GPTQ.md-compatibility start -->
206
  ## Compatibility
207
 
208
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
209
+
210
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
211
 
212
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
213
+ <!-- README_GPTQ.md-compatibility end -->
214
 
215
  <!-- footer start -->
216
+ <!-- 200823 -->
217
  ## Discord
218
 
219
  For further support, and discussions on these models and AI in general, join us at:
 
235
 
236
  **Special thanks to**: Aemon Algiz.
237
 
238
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
239
 
240
 
241
  Thank you to all my generous patrons and donaters!
242
 
243
+ And thank you again to a16z for their generous grant.
244
+
245
  <!-- footer end -->
246
 
247
  # Original model card: Zaraki Quem Parte's Zarablend L2 7B
 
253
 
254
  This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py)
255
 
256
+ Quantized Model by @TheBloke:
257
+ - [GGML](https://huggingface.co/TheBloke/Zarablend-L2-7B-GGML)
258
+ - [GPTQ](https://huggingface.co/TheBloke/Zarablend-L2-7B-GPTQ)
259
+
260
  Merge illustration:
261
 
262
  ![illustration](zarablend-merge-illustration.png)