TheBloke commited on
Commit
58e0fc4
1 Parent(s): 685fe45

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +821 -0
README.md ADDED
@@ -0,0 +1,821 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: 01-ai/Yi-34B-Chat
3
+ inference: false
4
+ license: other
5
+ license_link: LICENSE
6
+ license_name: yi-license
7
+ model_creator: 01-ai
8
+ model_name: Yi 34B Chat
9
+ model_type: yi
10
+ pipeline_tag: text-generation
11
+ prompt_template: '<|im_start|>system
12
+
13
+ {system_message}<|im_end|>
14
+
15
+ <|im_start|>user
16
+
17
+ {prompt}<|im_end|>
18
+
19
+ <|im_start|>assistant
20
+
21
+ '
22
+ quantized_by: TheBloke
23
+ widget:
24
+ - example_title: Yi-34B-Chat
25
+ output:
26
+ text: ' Hello! How can I assist you today?'
27
+ text: hi
28
+ - example_title: Yi-34B
29
+ output:
30
+ text: " an eerie sense that something is just not right\u2026\nBetween the two\
31
+ \ worlds lies The Forgotten Kingdom - home to creatures long since thought extinct\
32
+ \ and ancient magic so strong it defies belief! Only here can you find what\
33
+ \ has been lost for centuries: An Elixir Of Life which will restore youth and\
34
+ \ vitality if only those who seek its power are brave enough to face up against\
35
+ \ all manner of dangers lurking in this mysterious land! But beware; some say\
36
+ \ there may even exist powerful entities beyond our comprehension whose intentions\
37
+ \ towards humanity remain unclear at best ---- they might want nothing more\
38
+ \ than destruction itself rather then anything else from their quest after immortality\
39
+ \ (and maybe someone should tell them about modern medicine)? In any event though\
40
+ \ \u2013 one thing remains true regardless : whether or not success comes easy\
41
+ \ depends entirely upon how much effort we put into conquering whatever challenges\
42
+ \ lie ahead along with having faith deep down inside ourselves too ;) So let\u2019\
43
+ s get started now shall We?"
44
+ text: There's a place where time stands still. A place of breath taking wonder,
45
+ but also
46
+ ---
47
+ <!-- markdownlint-disable MD041 -->
48
+
49
+ <!-- header start -->
50
+ <!-- 200823 -->
51
+ <div style="width: auto; margin-left: auto; margin-right: auto">
52
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
53
+ </div>
54
+ <div style="display: flex; justify-content: space-between; width: 100%;">
55
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
56
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
57
+ </div>
58
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
59
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
60
+ </div>
61
+ </div>
62
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
63
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
64
+ <!-- header end -->
65
+
66
+ # Yi 34B Chat - AWQ
67
+ - Model creator: [01-ai](https://huggingface.co/01-ai)
68
+ - Original model: [Yi 34B Chat](https://huggingface.co/01-ai/Yi-34B-Chat)
69
+
70
+ <!-- description start -->
71
+ ## Description
72
+
73
+ This repo contains AWQ model files for [01-ai's Yi 34B Chat](https://huggingface.co/01-ai/Yi-34B-Chat).
74
+
75
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
76
+
77
+
78
+ ### About AWQ
79
+
80
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
81
+
82
+ It is supported by:
83
+
84
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
85
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
86
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
87
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
88
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
89
+
90
+ <!-- description end -->
91
+ <!-- repositories-available start -->
92
+ ## Repositories available
93
+
94
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-34B-Chat-AWQ)
95
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ)
96
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-34B-Chat-GGUF)
97
+ * [01-ai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/01-ai/Yi-34B-Chat)
98
+ <!-- repositories-available end -->
99
+
100
+ <!-- prompt-template start -->
101
+ ## Prompt template: ChatML
102
+
103
+ ```
104
+ <|im_start|>system
105
+ {system_message}<|im_end|>
106
+ <|im_start|>user
107
+ {prompt}<|im_end|>
108
+ <|im_start|>assistant
109
+
110
+ ```
111
+
112
+ <!-- prompt-template end -->
113
+
114
+
115
+ <!-- README_AWQ.md-provided-files start -->
116
+ ## Provided files, and AWQ parameters
117
+
118
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
119
+
120
+ Models are released as sharded safetensors files.
121
+
122
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
123
+ | ------ | ---- | -- | ----------- | ------- | ---- |
124
+ | [main](https://huggingface.co/TheBloke/Yi-34B-Chat-AWQ/tree/main) | 4 | 128 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 19.23 GB
125
+
126
+ <!-- README_AWQ.md-provided-files end -->
127
+
128
+ <!-- README_AWQ.md-text-generation-webui start -->
129
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
130
+
131
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
132
+
133
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
134
+
135
+ 1. Click the **Model tab**.
136
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-34B-Chat-AWQ`.
137
+ 3. Click **Download**.
138
+ 4. The model will start downloading. Once it's finished it will say "Done".
139
+ 5. In the top left, click the refresh icon next to **Model**.
140
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Yi-34B-Chat-AWQ`
141
+ 7. Select **Loader: AutoAWQ**.
142
+ 8. Click Load, and the model will load and is now ready for use.
143
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
144
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
145
+ <!-- README_AWQ.md-text-generation-webui end -->
146
+
147
+ <!-- README_AWQ.md-use-from-vllm start -->
148
+ ## Multi-user inference server: vLLM
149
+
150
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
151
+
152
+ - Please ensure you are using vLLM version 0.2 or later.
153
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
154
+
155
+ For example:
156
+
157
+ ```shell
158
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Yi-34B-Chat-AWQ --quantization awq --dtype auto
159
+ ```
160
+
161
+ - When using vLLM from Python code, again set `quantization=awq`.
162
+
163
+ For example:
164
+
165
+ ```python
166
+ from vllm import LLM, SamplingParams
167
+
168
+ prompts = [
169
+ "Tell me about AI",
170
+ "Write a story about llamas",
171
+ "What is 291 - 150?",
172
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
173
+ ]
174
+ prompt_template=f'''<|im_start|>system
175
+ {system_message}<|im_end|>
176
+ <|im_start|>user
177
+ {prompt}<|im_end|>
178
+ <|im_start|>assistant
179
+ '''
180
+
181
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
182
+
183
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
184
+
185
+ llm = LLM(model="TheBloke/Yi-34B-Chat-AWQ", quantization="awq", dtype="auto")
186
+
187
+ outputs = llm.generate(prompts, sampling_params)
188
+
189
+ # Print the outputs.
190
+ for output in outputs:
191
+ prompt = output.prompt
192
+ generated_text = output.outputs[0].text
193
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
194
+ ```
195
+ <!-- README_AWQ.md-use-from-vllm start -->
196
+
197
+ <!-- README_AWQ.md-use-from-tgi start -->
198
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
199
+
200
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
201
+
202
+ Example Docker parameters:
203
+
204
+ ```shell
205
+ --model-id TheBloke/Yi-34B-Chat-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
206
+ ```
207
+
208
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
209
+
210
+ ```shell
211
+ pip3 install huggingface-hub
212
+ ```
213
+
214
+ ```python
215
+ from huggingface_hub import InferenceClient
216
+
217
+ endpoint_url = "https://your-endpoint-url-here"
218
+
219
+ prompt = "Tell me about AI"
220
+ prompt_template=f'''<|im_start|>system
221
+ {system_message}<|im_end|>
222
+ <|im_start|>user
223
+ {prompt}<|im_end|>
224
+ <|im_start|>assistant
225
+ '''
226
+
227
+ client = InferenceClient(endpoint_url)
228
+ response = client.text_generation(prompt,
229
+ max_new_tokens=128,
230
+ do_sample=True,
231
+ temperature=0.7,
232
+ top_p=0.95,
233
+ top_k=40,
234
+ repetition_penalty=1.1)
235
+
236
+ print(f"Model output: ", response)
237
+ ```
238
+ <!-- README_AWQ.md-use-from-tgi end -->
239
+
240
+ <!-- README_AWQ.md-use-from-python start -->
241
+ ## Inference from Python code using Transformers
242
+
243
+ ### Install the necessary packages
244
+
245
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
246
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
247
+
248
+ ```shell
249
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
250
+ ```
251
+
252
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
253
+
254
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
255
+
256
+ ```shell
257
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
258
+ ```
259
+
260
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
261
+
262
+ ```shell
263
+ pip3 uninstall -y autoawq
264
+ git clone https://github.com/casper-hansen/AutoAWQ
265
+ cd AutoAWQ
266
+ pip3 install .
267
+ ```
268
+
269
+ ### Transformers example code (requires Transformers 4.35.0 and later)
270
+
271
+ ```python
272
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
273
+
274
+ model_name_or_path = "TheBloke/Yi-34B-Chat-AWQ"
275
+
276
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
277
+ model = AutoModelForCausalLM.from_pretrained(
278
+ model_name_or_path,
279
+ low_cpu_mem_usage=True,
280
+ device_map="cuda:0"
281
+ )
282
+
283
+ # Using the text streamer to stream output one token at a time
284
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
285
+
286
+ prompt = "Tell me about AI"
287
+ prompt_template=f'''<|im_start|>system
288
+ {system_message}<|im_end|>
289
+ <|im_start|>user
290
+ {prompt}<|im_end|>
291
+ <|im_start|>assistant
292
+ '''
293
+
294
+ # Convert prompt to tokens
295
+ tokens = tokenizer(
296
+ prompt_template,
297
+ return_tensors='pt'
298
+ ).input_ids.cuda()
299
+
300
+ generation_params = {
301
+ "do_sample": True,
302
+ "temperature": 0.7,
303
+ "top_p": 0.95,
304
+ "top_k": 40,
305
+ "max_new_tokens": 512,
306
+ "repetition_penalty": 1.1
307
+ }
308
+
309
+ # Generate streamed output, visible one token at a time
310
+ generation_output = model.generate(
311
+ tokens,
312
+ streamer=streamer,
313
+ **generation_params
314
+ )
315
+
316
+ # Generation without a streamer, which will include the prompt in the output
317
+ generation_output = model.generate(
318
+ tokens,
319
+ **generation_params
320
+ )
321
+
322
+ # Get the tokens from the output, decode them, print them
323
+ token_output = generation_output[0]
324
+ text_output = tokenizer.decode(token_output)
325
+ print("model.generate output: ", text_output)
326
+
327
+ # Inference is also possible via Transformers' pipeline
328
+ from transformers import pipeline
329
+
330
+ pipe = pipeline(
331
+ "text-generation",
332
+ model=model,
333
+ tokenizer=tokenizer,
334
+ **generation_params
335
+ )
336
+
337
+ pipe_output = pipe(prompt_template)[0]['generated_text']
338
+ print("pipeline output: ", pipe_output)
339
+
340
+ ```
341
+ <!-- README_AWQ.md-use-from-python end -->
342
+
343
+ <!-- README_AWQ.md-compatibility start -->
344
+ ## Compatibility
345
+
346
+ The files provided are tested to work with:
347
+
348
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
349
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
350
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
351
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
352
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
353
+
354
+ <!-- README_AWQ.md-compatibility end -->
355
+
356
+ <!-- footer start -->
357
+ <!-- 200823 -->
358
+ ## Discord
359
+
360
+ For further support, and discussions on these models and AI in general, join us at:
361
+
362
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
363
+
364
+ ## Thanks, and how to contribute
365
+
366
+ Thanks to the [chirper.ai](https://chirper.ai) team!
367
+
368
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
369
+
370
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
371
+
372
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
373
+
374
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
375
+
376
+ * Patreon: https://patreon.com/TheBlokeAI
377
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
378
+
379
+ **Special thanks to**: Aemon Algiz.
380
+
381
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
382
+
383
+
384
+ Thank you to all my generous patrons and donaters!
385
+
386
+ And thank you again to a16z for their generous grant.
387
+
388
+ <!-- footer end -->
389
+
390
+ # Original model card: 01-ai's Yi 34B Chat
391
+
392
+
393
+
394
+ <div align="center">
395
+
396
+ <p align="center">
397
+ <img width="200px" src="https://github.com/01-ai/Yi/raw/main/assets/img/Yi.svg?sanitize=true">
398
+ </p>
399
+
400
+ <div style="display: inline-block;">
401
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/issues">
402
+ <img src="https://img.shields.io/github/issues/01-ai/Yi?logo=github" style="margin: 0 0;">
403
+ </a>
404
+ </div>
405
+
406
+ <div style="display: inline-block;">
407
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml">
408
+ <img src="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml/badge.svg" style="margin: 0 0;">
409
+ </a>
410
+ </div>
411
+
412
+ <div style="display: inline-block;">
413
+ <a href="https://huggingface.co/01-ai">
414
+ <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-01--ai-blue" style="margin: 0 0;">
415
+ </a>
416
+ </div>
417
+
418
+ <div style="display: inline-block;">
419
+ <a rel="noopener nofollow" href="https://www.modelscope.cn/organization/01ai/">
420
+ <img src="https://img.shields.io/badge/ModelScope-01--ai-blue" style="margin: 0 0;">
421
+ </a>
422
+ </div>
423
+
424
+ <div style="display: inline-block;">
425
+ <a rel="noopener nofollow" href="https://wisemodel.cn/organization/01.AI">
426
+ <img src="https://img.shields.io/badge/WiseModel-01--ai-blue" style="margin: 0 0;">
427
+ </a>
428
+ </div>
429
+
430
+ <div style="display: inline-block;">
431
+ <a rel="noopener nofollow" href="https://replicate.com/01-ai">
432
+ <img src="https://img.shields.io/badge/Replicate-01--ai-blue?logo=" style="margin: 0 0;">
433
+ </a>
434
+ </div>
435
+
436
+ <div style="display: inline-block;">
437
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/LICENSE">
438
+ <img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue" style="margin: 0 0;">
439
+ </a>
440
+ </div>
441
+
442
+ <div style="display: inline-block;">
443
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
444
+ <img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
445
+ </a>
446
+ </div>
447
+
448
+ <div style="display: inline-block;">
449
+ <a rel="noopener nofollow" href="mailto:oss@01.ai">
450
+ <img src="https://img.shields.io/badge/✉️-yi@01.ai-FFE01B" style="margin: 0 0;">
451
+ </a>
452
+ </div>
453
+
454
+ </div>
455
+
456
+ ## Introduction
457
+
458
+ The **Yi** series models are large language models trained from scratch by
459
+ developers at [01.AI](https://01.ai/).
460
+
461
+ ## News
462
+
463
+ <details open>
464
+ <summary>🎯 <b>2023/11/23</b>: The chat models are open to public.</summary>
465
+
466
+ This release contains two chat models based on previous released base models, two 8-bits models quntinized by GPTQ, two 4-bits models quantinized by AWQ.
467
+
468
+ - `Yi-34B-Chat`
469
+ - `Yi-34B-Chat-4bits`
470
+ - `Yi-34B-Chat-8bits`
471
+ - `Yi-6B-Chat`
472
+ - `Yi-6B-Chat-4bits`
473
+ - `Yi-6B-Chat-8bits`
474
+
475
+ You can try some of them interactively at:
476
+
477
+ - [HuggingFace](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
478
+ - [Replicate](https://replicate.com/01-ai)
479
+ </details>
480
+
481
+ <details open>
482
+ <summary>🔔 <b>2023/11/23</b>: The Yi Series Models Community License Agreement is updated to v2.1.</summary>
483
+ </details>
484
+
485
+ <details>
486
+ <summary>🔥 <b>2023/11/08</b>: Invited test of Yi-34B chat model.</summary>
487
+
488
+ Application form:
489
+
490
+ - [English](https://cn.mikecrm.com/l91ODJf)
491
+ - [Chinese](https://cn.mikecrm.com/gnEZjiQ)
492
+
493
+ </details>
494
+
495
+ <details>
496
+ <summary>🎯 <b>2023/11/05</b>: The base model of <code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>.</summary>
497
+
498
+ This release contains two base models with the same parameter sizes of previous
499
+ release, except that the context window is extended to 200K.
500
+
501
+ </details>
502
+
503
+ <details>
504
+ <summary>🎯 <b>2023/11/02</b>: The base model of <code>Yi-6B</code> and <code>Yi-34B</code>.</summary>
505
+
506
+ The first public release contains two bilingual (English/Chinese) base models
507
+ with the parameter sizes of 6B and 34B. Both of them are trained with 4K
508
+ sequence length and can be extended to 32K during inference time.
509
+
510
+ </details>
511
+
512
+ ## Model Performance
513
+
514
+ ### Base Model Performance
515
+
516
+ | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code |
517
+ | :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
518
+ | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - |
519
+ | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 |
520
+ | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 |
521
+ | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 |
522
+ | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** |
523
+ | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 |
524
+ | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 |
525
+ | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - |
526
+ | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 |
527
+ | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 |
528
+ | Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 |
529
+ | **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 |
530
+ | Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 |
531
+
532
+ While benchmarking open-source models, we have observed a disparity between the
533
+ results generated by our pipeline and those reported in public sources (e.g.
534
+ OpenCompass). Upon conducting a more in-depth investigation of this difference,
535
+ we have discovered that various models may employ different prompts,
536
+ post-processing strategies, and sampling techniques, potentially resulting in
537
+ significant variations in the outcomes. Our prompt and post-processing strategy
538
+ remains consistent with the original benchmark, and greedy decoding is employed
539
+ during evaluation without any post-processing for the generated content. For
540
+ scores that were not reported by the original authors (including scores reported
541
+ with different settings), we try to get results with our pipeline.
542
+
543
+ To evaluate the model's capability extensively, we adopted the methodology
544
+ outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
545
+ ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
546
+ were incorporated to evaluate reading comprehension. CSQA was exclusively tested
547
+ using a 7-shot setup, while all other tests were conducted with a 0-shot
548
+ configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
549
+ HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
550
+ to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
551
+ is derived by averaging the scores on the remaining tasks. Since the scores for
552
+ these two tasks are generally lower than the average, we believe that
553
+ Falcon-180B's performance was not underestimated.
554
+
555
+ ### Chat Model Performance
556
+
557
+ | Model | MMLU | MMLU | CMMLU | CMMLU | C-Eval(val)<sup>*</sup> | C-Eval(val)<sup>*</sup> | Truthful QA | BBH | BBH | GSM8k | GSM8k |
558
+ | ----------------------- | --------- | --------- | --------- | --------- | ----------------------- | ----------------------- | ----------- | --------- | --------- | --------- | --------- |
559
+ | | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 0-shot | 3-shot | 0-shot | 4-shot |
560
+ | LLaMA2-13B-Chat | 50.88 | 47.33 | 27.47 | 35.08 | 27.93 | 35.88 | 36.84 | 32.90 | 58.22 | 36.85 | 2.73 |
561
+ | LLaMA2-70B-Chat | 59.42 | 59.86 | 36.10 | 40.99 | 34.99 | 41.31 | 53.95 | 42.36 | 58.53 | 47.08 | 58.68 |
562
+ | Baichuan2-13B-Chat | 55.09 | 50.14 | 58.64 | 59.47 | 56.02 | 54.75 | 48.98 | 38.81 | 47.15 | 45.72 | 23.28 |
563
+ | Qwen-14B-Chat | 63.99 | 64.98 | 67.73 | 70.57 | 66.12 | 70.06 | 52.49 | 49.65 | 54.98 | 59.51 | 61.18 |
564
+ | InternLM-Chat-20B | 55.55 | 57.42 | 53.55 | 53.75 | 51.19 | 53.57 | 51.75 | 42.41 | 36.68 | 15.69 | 43.44 |
565
+ | AquilaChat2-34B v1.2 | 65.15 | 66.70 | 67.51 | 70.02 | **82.99** | **89.38** | **64.33** | 20.12 | 34.28 | 11.52 | 48.45 |
566
+ | Yi-6B-Chat | 58.24 | 60.99 | 69.44 | 74.71 | 68.80 | 74.22 | 50.58 | 39.70 | 47.15 | 38.44 | 44.88 |
567
+ | Yi-6B-Chat-8bits(GPTQ) | 58.29 | 60.96 | 69.21 | 74.69 | 69.17 | 73.85 | 49.85 | 40.35 | 47.26 | 39.42 | 44.88 |
568
+ | Yi-6B-Chat-4bits(AWQ) | 56.78 | 59.89 | 67.70 | 73.29 | 67.53 | 72.29 | 50.29 | 37.74 | 43.62 | 35.71 | 38.36 |
569
+ | Yi-34B-Chat | **67.62** | 73.46 | **79.11** | **81.34** | 77.04 | 78.53 | 62.43 | 51.41 | **71.74** | **71.65** | **75.97** |
570
+ | Yi-34B-Chat-8bits(GPTQ) | 66.24 | **73.69** | 79.05 | 81.23 | 76.82 | 78.97 | 61.84 | **52.08** | 70.97 | 70.74 | 75.74 |
571
+ | Yi-34B-Chat-4bits(AWQ) | 65.77 | 72.42 | 78.21 | 80.50 | 75.71 | 77.27 | 61.84 | 48.30 | 69.39 | 70.51 | 74.00 |
572
+
573
+ We evaluated various benchmarks using both zero-shot and few-shot methods, except for TruthfulQA. Generally, the zero-shot approach is more common in chat models. Our evaluation strategy involves generating responses while following instructions explicitly or implicitly (such as using few-shot examples). We then isolate relevant answers from the generated text. Some models are not well-suited to produce output in the specific format required by instructions in few datasets, which leads to suboptimal results.
574
+
575
+ <strong>*</strong>: C-Eval results are evaluated on the validation datasets
576
+
577
+ ### Quantized Chat Model Performance
578
+
579
+ We also provide both 4-bit (AWQ) and 8-bit (GPTQ) quantized Yi chat models. Evaluation results on various benchmarks have shown that the quantized models have negligible losses. Additionally, they reduce the memory footprint size. After testing different configurations of prompts and generation lengths, we highly recommend following the guidelines in the memory footprint table below when selecting a device to run our models.
580
+
581
+ | | batch=1 | batch=4 | batch=16 | batch=32 |
582
+ | ----------------------- | ------- | ------- | -------- | -------- |
583
+ | Yi-34B-Chat | 65GiB | 68GiB | 76GiB | >80GiB |
584
+ | Yi-34B-Chat-8bits(GPTQ) | 35GiB | 37GiB | 46GiB | 58GiB |
585
+ | Yi-34B-Chat-4bits(AWQ) | 19GiB | 20GiB | 30GiB | 40GiB |
586
+ | Yi-6B-Chat | 12GiB | 13GiB | 15GiB | 18GiB |
587
+ | Yi-6B-Chat-8bits(GPTQ) | 7GiB | 8GiB | 10GiB | 14GiB |
588
+ | Yi-6B-Chat-4bits(AWQ) | 4GiB | 5GiB | 7GiB | 10GiB |
589
+
590
+ Note: All the numbers in the table represent the minimum recommended memory for running models of the corresponding size.
591
+
592
+ ### Limitations of Chat Model
593
+
594
+ The released chat model has undergone exclusive training using Supervised Fine-Tuning (SFT). Compared to other standard chat models, our model produces more diverse responses, making it suitable for various downstream tasks, such as creative scenarios. Furthermore, this diversity is expected to enhance the likelihood of generating higher quality responses, which will be advantageous for subsequent Reinforcement Learning (RL) training.
595
+
596
+ However, this higher diversity might amplify certain existing issues, including:
597
+
598
+ - **Hallucination**: This refers to the model generating factually incorrect or nonsensical information. With the model's responses being more varied, there's a higher chance of hallucination that are not based on accurate data or logical reasoning.
599
+ - **Non-determinism in re-generation**: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions.
600
+ - **Cumulative Error**: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc.
601
+
602
+ To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as`temperature`,`top_p`, or`top_k`. These adjustments can help in the balance between creativity and coherence in the model's outputs.
603
+
604
+
605
+
606
+ ## Usage
607
+
608
+ Feel free to [create an issue](https://github.com/01-ai/Yi/issues/new) if you
609
+ encounter any problem when using the **Yi** series models.
610
+
611
+ ### 1. Prepare development environment
612
+
613
+ #### 1.1 Docker
614
+ The best approach to try the **Yi** series models is through Docker with GPUs. We
615
+ provide the following docker images to help you get started.
616
+
617
+ - `registry.lingyiwanwu.com/ci/01-ai/yi:latest`
618
+ - `ghcr.io/01-ai/yi:latest`
619
+
620
+ Note that the `latest` tag always points to the latest code in the `main`
621
+ branch. To test a stable version, please replace it with a specific
622
+ [tag](https://github.com/01-ai/Yi/tags).
623
+
624
+ #### 1.2 Local development environment
625
+ We use [`conda-lock`](https://github.com/conda/conda-lock) to generate fully reproducible lock files for conda environments. You can refer to [conda-lock.yml](./conda-lock.yml) for the exact versions of the dependencies. Additionally, we utilize [`micromamba`](https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html) for installing these dependencies.
626
+
627
+ To install the dependencies, please follow these steps:
628
+ 1. Install `micromamba` by following the instructions available [here](https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html).
629
+ 2. Execute `micromamba install -y -n yi -f conda-lock.yml` to create a conda environment named `yi` and install the necessary dependencies.
630
+
631
+ ### 2. Download the model (optional)
632
+
633
+ By default, the model weights and tokenizer will be downloaded from
634
+ [HuggingFace](https://huggingface.co/01-ai) automatically in the next step. You
635
+ can also download them manually from the following places:
636
+
637
+ - [ModelScope](https://www.modelscope.cn/organization/01ai/)
638
+ - [WiseModel](https://wisemodel.cn/organization/01.AI)
639
+
640
+ ### 3. Examples
641
+
642
+ #### 3.1 Use the chat model
643
+
644
+ ```python
645
+ from transformers import AutoModelForCausalLM, AutoTokenizer
646
+
647
+ model_path = '01-ai/Yi-34b-Chat'
648
+
649
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
650
+
651
+ # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
652
+ model = AutoModelForCausalLM.from_pretrained(
653
+ model_path,
654
+ device_map="auto",
655
+ torch_dtype='auto'
656
+ ).eval()
657
+
658
+ # Prompt content: "hi"
659
+ messages = [
660
+ {"role": "user", "content": "hi"}
661
+ ]
662
+
663
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
664
+ output_ids = model.generate(input_ids.to('cuda'))
665
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
666
+
667
+ # Model response: "Hello! How can I assist you today?"
668
+ print(response)
669
+ ```
670
+
671
+ #### 3.2 Use the base model
672
+
673
+ ```bash
674
+ python demo/text_generation.py
675
+ ```
676
+
677
+ To reuse the downloaded models in the previous step, you can provide the extra
678
+ `--model` argument:
679
+
680
+ ```bash
681
+ python demo/text_generation.py --model /path/to/model
682
+ ```
683
+
684
+ Or if you'd like to get your hands dirty:
685
+
686
+ ```python
687
+ from transformers import AutoModelForCausalLM, AutoTokenizer
688
+
689
+ model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34B", device_map="auto", torch_dtype="auto", trust_remote_code=True)
690
+ tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34B", trust_remote_code=True)
691
+ inputs = tokenizer("There's a place where time stands still. A place of breath taking wonder, but also", return_tensors="pt")
692
+ max_length = 256
693
+
694
+ outputs = model.generate(
695
+ inputs.input_ids.cuda(),
696
+ max_length=max_length,
697
+ eos_token_id=tokenizer.eos_token_id,
698
+ do_sample=True,
699
+ repetition_penalty=1.3,
700
+ no_repeat_ngram_size=5,
701
+ temperature=0.7,
702
+ top_k=40,
703
+ top_p=0.8,
704
+ )
705
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
706
+ ```
707
+
708
+ <details>
709
+
710
+ <summary>Output</summary>
711
+
712
+ **Prompt**: There's a place where time stands still. A place of breath taking wonder, but also
713
+
714
+ **Generation**: There's a place where time stands still. A place of breath taking wonder, but also of great danger. A place where the very air you breathe could kill you. A place where the only way to survive is to be prepared.
715
+ The place is called the Arctic.
716
+ The Arctic is a vast, frozen wilderness. It is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
717
+ The Arctic is also a place of great beauty. The ice and snow are a pristine white. The sky is a deep blue. The sunsets are spectacular.
718
+ But the Arctic is also a place of great danger. The ice can be treacherous. The winds can be deadly. The sun can be blinding.
719
+ The Arctic is a place where the only way to survive is to be prepared.
720
+ The Arctic is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
721
+ The Arctic is a place of great beauty. The ice and snow are a
722
+
723
+ </details>
724
+
725
+ For more advanced usage, please refer to the
726
+ [doc](https://github.com/01-ai/Yi/tree/main/demo).
727
+
728
+ #### 3.3 Finetuning from the base model:
729
+
730
+ ```bash
731
+ bash finetune/scripts/run_sft_Yi_6b.sh
732
+ ```
733
+
734
+ Once finished, you can compare the finetuned model and the base model with the following command:
735
+
736
+ ```bash
737
+ bash finetune/scripts/run_eval.sh
738
+ ```
739
+
740
+ For more advanced usage like fine-tuning based on your custom data, please refer
741
+ the [doc](https://github.com/01-ai/Yi/tree/main/finetune).
742
+
743
+ #### 3.4 Quantization
744
+
745
+ ##### GPT-Q
746
+ ```bash
747
+ python quantization/gptq/quant_autogptq.py \
748
+ --model /base_model \
749
+ --output_dir /quantized_model \
750
+ --trust_remote_code
751
+ ```
752
+
753
+ Once finished, you can then evaluate the resulting model as follows:
754
+
755
+ ```bash
756
+ python quantization/gptq/eval_quantized_model.py \
757
+ --model /quantized_model \
758
+ --trust_remote_code
759
+ ```
760
+
761
+ For a more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/gptq)
762
+
763
+ ##### AWQ
764
+ ```bash
765
+ python quantization/awq/quant_autoawq.py \
766
+ --model /base_model \
767
+ --output_dir /quantized_model \
768
+ --trust_remote_code
769
+ ```
770
+
771
+ Once finished, you can then evaluate the resulted model as follows:
772
+
773
+ ```bash
774
+ python quantization/awq/eval_quantized_model.py \
775
+ --model /quantized_model \
776
+ --trust_remote_code
777
+ ```
778
+
779
+ For more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/awq)
780
+
781
+ ## Ecosystem
782
+
783
+ 🤗 You are encouraged to create a PR and share your awesome work built on top of
784
+ the Yi series models.
785
+
786
+ - Serving
787
+ - [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): Efficiently run Yi models locally.
788
+ - Quantization
789
+ - [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
790
+ - [TheBloke/Yi-34B-GPTQ](https://huggingface.co/TheBloke/Yi-34B-GPTQ)
791
+ - Finetuning
792
+ - [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B)
793
+
794
+ ## FAQ
795
+
796
+ 1. **What dataset was this trained with?**
797
+
798
+ The dataset we use contains Chinese & English only. We used approximately 3T
799
+ tokens. The detailed number and its construction will be described in the
800
+ upcoming technical report.
801
+
802
+ ## Disclaimer
803
+
804
+ We use data compliance checking algorithms during the training process, to
805
+ ensure the compliance of the trained model to the best of our ability. Due to
806
+ complex data and the diversity of language model usage scenarios, we cannot
807
+ guarantee that the model will generate correct, and reasonable output in all
808
+ scenarios. Please be aware that there is still a risk of the model producing
809
+ problematic outputs. We will not be responsible for any risks and issues
810
+ resulting from misuse, misguidance, illegal usage, and related misinformation,
811
+ as well as any associated data security concerns.
812
+
813
+ ## License
814
+
815
+ The source code in this repo is licensed under the [Apache 2.0
816
+ license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models
817
+ are fully open for academic research and free commercial usage with permission
818
+ via applications. All usage must adhere to the [Model License
819
+ Agreement 2.0](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
820
+ To apply for the official commercial license, please contact us
821
+ ([yi@01.ai](mailto:yi@01.ai)).