TheBloke commited on
Commit
b31cbad
1 Parent(s): d4fc0fb

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -17
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - pg19
4
  inference: false
@@ -7,9 +8,11 @@ license: llama2
7
  metrics:
8
  - perplexity
9
  model_creator: NousResearch
10
- model_link: https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k
11
  model_name: Yarn Llama 2 7B 128K
12
  model_type: llama
 
 
 
13
  quantized_by: TheBloke
14
  ---
15
 
@@ -45,9 +48,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
45
  <!-- repositories-available start -->
46
  ## Repositories available
47
 
 
48
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ)
49
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GGUF)
50
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GGML)
51
  * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k)
52
  <!-- repositories-available end -->
53
 
@@ -61,6 +64,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
61
 
62
  <!-- prompt-template end -->
63
 
 
64
  <!-- README_GPTQ.md-provided-files start -->
65
  ## Provided files and GPTQ parameters
66
 
@@ -85,22 +89,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
85
 
86
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
87
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
88
- | [main](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
89
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
90
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
91
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
93
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
94
 
95
  <!-- README_GPTQ.md-provided-files end -->
96
 
97
  <!-- README_GPTQ.md-download-from-branches start -->
98
  ## How to download from branches
99
 
100
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Yarn-Llama-2-7B-128K-GPTQ:gptq-4bit-32g-actorder_True`
101
  - With Git, you can clone a branch with:
102
  ```
103
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ
104
  ```
105
  - In Python Transformers code, the branch is the `revision` parameter; see below.
106
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -113,7 +117,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
113
 
114
  1. Click the **Model tab**.
115
  2. Under **Download custom model or LoRA**, enter `TheBloke/Yarn-Llama-2-7B-128K-GPTQ`.
116
- - To download from a specific branch, enter for example `TheBloke/Yarn-Llama-2-7B-128K-GPTQ:gptq-4bit-32g-actorder_True`
117
  - see Provided Files above for the list of branches for each option.
118
  3. Click **Download**.
119
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -161,10 +165,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
161
 
162
  model_name_or_path = "TheBloke/Yarn-Llama-2-7B-128K-GPTQ"
163
  # To use a different branch, change revision
164
- # For example: revision="gptq-4bit-32g-actorder_True"
165
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
166
- torch_dtype=torch.float16,
167
  device_map="auto",
 
168
  revision="main")
169
 
170
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -177,7 +181,7 @@ prompt_template=f'''{prompt}
177
  print("\n\n*** Generate:")
178
 
179
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
180
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
181
  print(tokenizer.decode(output[0]))
182
 
183
  # Inference can also be done using transformers' pipeline
@@ -188,9 +192,11 @@ pipe = pipeline(
188
  model=model,
189
  tokenizer=tokenizer,
190
  max_new_tokens=512,
 
191
  temperature=0.7,
192
  top_p=0.95,
193
- repetition_penalty=1.15
 
194
  )
195
 
196
  print(pipe(prompt_template)[0]['generated_text'])
@@ -215,10 +221,12 @@ For further support, and discussions on these models and AI in general, join us
215
 
216
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
217
 
218
- ## Thanks, and how to contribute.
219
 
220
  Thanks to the [chirper.ai](https://chirper.ai) team!
221
 
 
 
222
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
223
 
224
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -230,7 +238,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
230
 
231
  **Special thanks to**: Aemon Algiz.
232
 
233
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
234
 
235
 
236
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k
3
  datasets:
4
  - pg19
5
  inference: false
 
8
  metrics:
9
  - perplexity
10
  model_creator: NousResearch
 
11
  model_name: Yarn Llama 2 7B 128K
12
  model_type: llama
13
+ prompt_template: '{prompt}
14
+
15
+ '
16
  quantized_by: TheBloke
17
  ---
18
 
 
48
  <!-- repositories-available start -->
49
  ## Repositories available
50
 
51
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-AWQ)
52
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ)
53
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GGUF)
 
54
  * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k)
55
  <!-- repositories-available end -->
56
 
 
64
 
65
  <!-- prompt-template end -->
66
 
67
+
68
  <!-- README_GPTQ.md-provided-files start -->
69
  ## Provided files and GPTQ parameters
70
 
 
89
 
90
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
91
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
92
+ | [main](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. |
93
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
94
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
95
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
96
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
97
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4) | 16384 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
98
 
99
  <!-- README_GPTQ.md-provided-files end -->
100
 
101
  <!-- README_GPTQ.md-download-from-branches start -->
102
  ## How to download from branches
103
 
104
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Yarn-Llama-2-7B-128K-GPTQ:main`
105
  - With Git, you can clone a branch with:
106
  ```
107
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Yarn-Llama-2-7B-128K-GPTQ
108
  ```
109
  - In Python Transformers code, the branch is the `revision` parameter; see below.
110
  <!-- README_GPTQ.md-download-from-branches end -->
 
117
 
118
  1. Click the **Model tab**.
119
  2. Under **Download custom model or LoRA**, enter `TheBloke/Yarn-Llama-2-7B-128K-GPTQ`.
120
+ - To download from a specific branch, enter for example `TheBloke/Yarn-Llama-2-7B-128K-GPTQ:main`
121
  - see Provided Files above for the list of branches for each option.
122
  3. Click **Download**.
123
  4. The model will start downloading. Once it's finished it will say "Done".
 
165
 
166
  model_name_or_path = "TheBloke/Yarn-Llama-2-7B-128K-GPTQ"
167
  # To use a different branch, change revision
168
+ # For example: revision="main"
169
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
170
  device_map="auto",
171
+ trust_remote_code=True,
172
  revision="main")
173
 
174
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
181
  print("\n\n*** Generate:")
182
 
183
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
184
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
185
  print(tokenizer.decode(output[0]))
186
 
187
  # Inference can also be done using transformers' pipeline
 
192
  model=model,
193
  tokenizer=tokenizer,
194
  max_new_tokens=512,
195
+ do_sample=True,
196
  temperature=0.7,
197
  top_p=0.95,
198
+ top_k=40,
199
+ repetition_penalty=1.1
200
  )
201
 
202
  print(pipe(prompt_template)[0]['generated_text'])
 
221
 
222
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
223
 
224
+ ## Thanks, and how to contribute
225
 
226
  Thanks to the [chirper.ai](https://chirper.ai) team!
227
 
228
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
229
+
230
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
231
 
232
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
238
 
239
  **Special thanks to**: Aemon Algiz.
240
 
241
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
242
 
243
 
244
  Thank you to all my generous patrons and donaters!